https://wodolei.ru/catalog/ekrany-dlya-vann/razdvizhnye/150cm/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

белок-1 — РНК — белок-2. Э. Глассман предположил, что белок-1, синтезируемый во время обучения, является активатором для специфических генов, которые на следующем шаге кодируют РНК, опре-делящую синтез белка-2. Последний причастен к консолидации памяти. В результате синаптические связи, которые появляются между нейронами в процессе обучения, превращаются в постоянные.
Идеи Э. Глассмана получили подтверждение в серии работ X. Мэттиаса и его коллег (Matthies H. et al., 1989), обративших внимание на наличие двух волн активации синтеза белков после обучения крыс различению стимулов. Первая волна белкового синтеза начиналась непосредственно после тренировки, в то время как вторая появлялась 6-8 ч спустя. Был сделан вывод, что две стадии формирования долговременной памяти требуют разных белков: регуляторных и эффекторных соответственно.
Экспериментальные доказательства двух фаз активации синтеза РНК и белков при обучении крыс получены с помощью радиоактивных методов. Регулярное измерение включенных в РНК и белки меченых предшественников в разные сроки после обучения обнаружило отставленные во времени два пика активации транскрипции и трансляции. При обучении крыс активному избеганию содержание радиоактивных РНК и белка возрастает в течение первого часа после сеанса обучения и вторично на 6—10-м часу.
А. Барзилаи (Barzilai A. et al., 1989) с коллегами из лаборатории Э. Кэндела описали две волны активации синтеза белка у сенсорных нейронов морского моллюска аплизии, когда долговременное синаптическое облегчение создавалось (в течение более 24 ч) аппликацией серотонина в течение 1,5 ч или 2-часовой аппликацией аналога цАМФ. Активация синтеза белка измерялась по включению радиоактивного 358-метионина. Появление первой волны активации синтеза белка наблюдалось через час после подведения серотонина, ко 2-му часу она исчезала. На 3-м часу возникала вторая волна активации синтеза белка, более выраженная и протяженная во времени.
Анализ состава синтезируемых белков с помощью гель-электрофореза показал, что на первой фазе активации под влиянием серотонина и цАМФ создаются одни и те же 15 белков. Их активация кратковременна (от 1 до 3 ч) и наступает через 15—30 мин после начала воздействия. Вторая волна появляется через 3 ч после начала воздействия и длится около 5 ч; она включает синтез четырех новых белков, а через 24 ч — синтез еще двух.
154
Одна из популярных сегодня молекулярных моделей памяти представляет процесс формирования памяти следующим образом. Внешнее воздействие (изменение экстраклеточной среды) вызывает в геноме нейрона каскадную реакцию, в которой выделяются две фазы активации синтеза белков и РНК. Первая фаза активации соответствует индукции специфических регуляторных генов из класса «непосредственно ранних генов». Продукты ранних генов индуцируют экспрессию «поздних» генов — морфорегуляторных генов. Они определяют вторую фазу активации синтеза РНК и белков, что ведет к росту и/или изменению клеточных связей в мозге.
«Ранние гены» впервые были обнаружены при изучении влияния фактора роста на нейроны в культуре ткани. По своим свойствам они напоминали «непосредственно ранние гены» бактериофагов и эукариотических ДНК вирусов. Поэтому по аналогии с вирусными генами эти быстро активирующиеся клеточные гены были названы «генами первичного ответа», «генами раннего ответа», «генами компетентности». Одним из первых ранних генов, который был идентифицирован и клонирован, стал ген c-fos. Предполагается, что он контролирует клеточный рост и пролиферацию. К настоящему времени клонировано уже около 100 ранних генов. Продукты большинства ранних генов представляют собой регуля-торные белки. Ранние гены контролируют транскрипцию поздних генов, являющихся для них мишенями. Они влияют на регулятор-ные элементы поздних генов в их промоторных областях, которые служат рецепторами для продуктов ранних генов.
Механизм долговременной памяти с учетом двухкаскадной реакции экспрессии генов представлен на рис. 36. Показаны волны экспрессии ранних генов (РГ) и поздних генов (ПГ). ДП формируется после экспрессии поздних генов.
В ряде раббт специально проверялась связь первой волны активации синтеза РНК и белков с экспрессией ранних генов. Индукция ранних генов (c-fos, c-jun), контролируемая с помощью введения радиоактивных предшественников РНК, была обнаружена в неокортексе мышей через 15 мин уже после одного опыта с обучением пассивному избеганию. Сходный эффект был зафиксирован через 30 мин после сеанса обучения крыс активному избеганию электрического тока (запрыгиванием на полочку): синтез мРНК возрастал вследствие индукции раннего гена c-fos, но не с-тус. Изменение наблюдали в коре, гиппокампе и мозжечке (Анохин К.В., 1997).
Экспрессия ранних генов возникает на ранней стадии обучения и с автоматизацией навыка исчезает (Анохин К.В., 1997). Чем труднее идет обучение, тем сильнее выражена их экспрессия. Хуже
155
0246
Обучение
Ранние гены
12 Время (часы)
Поздние гены
Рис. 36. Две волны экспрессии генов, определяющих появление долговременной памяти (ДП).
Экспрессии ранних (РГ) и поздних (ПГ) генов. На абсциссе — время после обучения; на ординате — эффективность процессов, определяющих долговременную память (по К.В. Анохину, 1997).
обучающиеся мыши (неуспешная группа) отличались в 1,8 раза большей экспрессией гена c-fos по сравнению с успешной группой. Экспрессия ранних генов c-fos и c-jun стимулировалась не только ситуацией обучения, но и помещением животного в новую, сенсорно-обогащенную среду, а также отменой ожидаемого отрицательного подкрепления.
Удобным объектом для изучения механизмов памяти всегда был гиппокамп. На нем легко можно смоделировать процесс обучения, создавая в нем электрической стимуляцией эпилептический очаг активности. С помощью измерения синтеза РНК радиологическими методами было установлено, что эпилептическая активность увеличивает экспрессию ранних генов в пирамидных клетках гип-покампа и зубчатой фасции. Кроме того, в этих же структурах гип-покампа наблюдается экспрессия двух других генов. Один кодирует синтез протеинкиназы А, ответственной за фосфорилирование белков. Экспрессия другого гена вызывает синтез рецепторов NMDA, медиатором для которых служит глутамат. Известно, что через эти рецепторы в клетку входит особенно много ионов Са2+, поэтому они непосредственно участвуют в процессе обучения.
Сильное влияние на представление о молекулярных механизмах памяти оказали работы Э. Кэндела и его коллег (Goelet P. et al., 1986; Kandel E. et al., 1987). Его теория каскада молекулярных реакций при обучении предполагает три уровня памяти. Кратковремен-
156
ная память, которая длится от нескольких минут до нескольких часов, обусловлена ковалентной модификацией белков, не достигших состояния возбуждения. Промежуточная память, охватывающая несколько часов, обусловлена фосфорилированием белков. Долговременная память, длящаяся более чем один день, зависит уже от индукции новых генов через вторичных посредников и регуляторов транскрипции. Авторы предположили, что ранние эф-фекторные гены ответственны за синтез белков, которые сохраняют память в течение дней. Память, сохраняемая в течение недель и месяцев, поддерживается другими — поздними эффекторными генами, которые включаются ранними регуляторными генами.
На основе накопленных за последние годы сведений об экспрессии генов при обучении некоторые исследователи приходят к выводу о том, что память'использует тот же генетический аппарат, который связан с онтогенетическим развитием организма, с регуляцией роста и дифференциацией его клеток. Подчеркивается общность молекулярного каскада экспрессии генов при обучении и развитии. Оба процесса реагируют на изменения экстраклеточной среды. На стадии развития организма новые экстраклеточные сигналы ведут к инициации экспрессии генов, обеспечивающей клеточную дифференцировку и консолидацию генетически запрограммированных функциональных систем.
При обучении комбинация экстраклеточных сигналов вызывает реэкспрессию генов, бывших активными на стадии созревания и онтогенетического развития организма.
На рис. 37 показано сходство основных этапов процессов экспрессии генов при развитии и обучении. Экстраклеточные сигналы активируют вторичные мессенджеры, которые высвобождают каталитические субъединицы протеинкиназ. Протеинкиназа транспортируется в ядро клетки и там через транскрипционные факторы действует на ранние гены (c-fos и c-jun), вызывая их экспрессию. Последние кодируют транскрипционные факторы для поздних генов — белки: FOS и JUN. Эти белки и вызывают экспрессию поздних генов, которая определяет синтез различных структурных белков и молекул, необходимых для синаптического роста.
Рассмотренные клеточные и молекулярные механизмы обучения не касаются проблемы специфичности этого процесса. Однако при обучении синаптическое облегчение проведения сигнала возникает селективно, т.е. на отдельных синапсах. Для объяснения этого явления Т.Н. Греченко и Е.Н. Соколов (1987) предположили, что вся мембрана нейрона проецируется на геном. Продукты реакций отдельных локусов мембраны, вызванные экстраклеточным сигналом в виде белка-регулятора (БР), стимулируют экспрессию или
157
РАЗВИТИЕ
Трофические факторы
ОБУЧЕНИЕ
Внеклеточные сигналы
мессенджеры (Са. цАМФ, ДАГ)
Экспрессия «генов-мишеней» (N-GAM, GAP-43)
Консолидация
функционал ь-
ных систеи!
Модификация функциональных систем
Рис. 37. Общность молекулярных каскадов экспрессии генов, обеспечивающей долговременное хранение информации при обучении и развитии. В процессе развития новые экстраклеточные сигналы ведут к инициации экспрессии генов, определяющей клеточную дифференциацию и консолидацию генетически запрограммированных функциональных систем. При обучении новые комбинации экстраклеточных сигналов вызывают реэкс-прессию генов, бывших активными в развитии. Это приводит к модификации функциональных систем и ее сохранению в долговременной памяти (по К.В. Анохину, 1997).
репрессию генома. Это достигается тем, что БР транспортируется в ядро к генам с помощью специального транслокационного белка (ТЛБ), который содержит метку активированного участка мембраны. После экспрессии генов (гена, кодирующего белок соот-ветствущего рецептора, и гена, ответственного за белок-метку) и синтеза соответствующих белков с помощью мРНК белок вместе с ТЛБ транспортируется к тому участку мембраны, который был закодирован белком-меткой. Эта схема предполагает, что механизм
158
экспрессии генов используется избирательно для изменения проводимости через селективные синапсы.
Большие возможности для выяснения молекулярных механизмов памяти открывает изучение собственно модификаций генома, вызываемых обучением. Исследование изменений ДНК под влиянием обучения в значительной степени тормозилось общепринятым представлением о «неприкосновенности» ДНК и ее причастности только к хранению генетической (врожденной) информации. В течение многих лет в молекулярной генетике господствовала идея о постоянстве генома. Однако в процессе жизнедеятельности клетки молекулы ДНК не остаются неизменными: отдельные участки ДНК умножаются, выпадают, перемещаются и модифицируются. Изменилось представление молекулярных биологов и о процессах транскрипции и трансляции. Мнение о том, что считывание генетической информации с ДНК всегда идет только в одном направлении: ДНК—>РНК—>белок, подверглось критике.
В 70-х годах Д. Балтимор (Baltimor D.) и X. Темин и С. Мицута-ни (Temin H., Mizutani S.) одновременно в одном и том же журнале «Nature» опубликовали данные о существовании фермента — обратной транскриптазы (или ревертазы), который способствует синтезу ДНК на основе информации, содержащейся в РНК. Так было открыто явление обратной транскрипции— передача информации в обратном направлении, от РНК к ДНК.
Изучение активности процесса обратной транскрипции при выработке у крыс пищедобывательного двигательного рефлекса в зависимости от их способности к обучению показало, что у быстро обучающихся животных активность обратной транскрипции в гиппокампе, которая измерялась по РНК-зависимому синтезу ДНК, в два раза выше по сравнению с медленно обучающимися животными (Р.И. Салганик и др., 1981). Группы животных составлялись селекционным методом. В одной наследственно закреплялась способность к быстрому обучению, другая формировалась из «неспособных» крыс, медленно обучающихся животных.
Открытие обратной транскрипции (получение ДНК с копий РНК) позволяет предполагать,' что существует процесс интеграции новых ДНК в геном, что может обеспечивать усиленный синтез клеточных структур, необходимых для сохранения новых связей между нейронами.
Экспериментальные доказательства модификации генома при обучении получены Н.А. Тушмаловой и ее сотрудниками (1973, 1993). Возрастание функциональной активности генома при обучении оценивалось двумя методами: по степени метилирования ДНК мозга и избирательной индукции синтеза ДНК. Метилирова-
159
ние относится к обратимой модификации ДНК, т.е. не передаваемой по наследству. Изменение степени метилирования ДНК исследовалось у крыс под влиянием выработки трех групп условных рефлексов: пищевых, пищедобывательных (чтобы получить пищу, крыса нажимала на полочку-педаль) и оборонительных — при электрокожном подкреплении. Измерения производились в коре, гип-покампе и мозжечке. Контролем служили животные, получавшие условные и безусловные раздражители в случайном порядке, и животные, не участвующие в опытах с обучением. Исследователи обнаружили увеличение степени метилирования ДНК при выработке и угасании условных рефлексов. Максимальное увеличение метилирования соответствует ранним стадиям обучения, с закреплением условного рефлекса оно возвращается к исходному уровню. Сильнее оно представлено в гиппокампе, чем в коре, и в нейронах, чем в глии.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


А-П

П-Я