https://wodolei.ru/catalog/smesiteli/Edelform/
5.10. ГАММА-КОЛЕБАНИЯ И ВНИМАНИЕ
Под ЭЭГ-реакцией активации у человека обычно понимают подавление, блокаду альфа-ритма, которая замещается нерегулярной и низкоамплитудной активностью. В некоторых работах описаны случаи, когда блокада альфа-ритма сочетается с одновременным усилением бета-активности, которая иногда выглядит как появление регулярного ритма на частоте 29—30 Гц (Данилова Н.Н., 1985).
В последние годы наблюдается стремительный рост числа публикаций, в которых сообщается о наличии в составе реакции ЭЭГ-активации усиления гамма-колебаний (30—170 Гц и более). Их связывают с контролируемыми когнитивными процессами, в частности с произвольным вниманием.
Усиление ритма 40 Гц обнаружено у кошки в лобно-теменной коре, когда она пристально следит за мышью (Bouyer JJ. et al., 1987). У млекопитающих, включая человека, колебания 40 Гц наблюдались в связи с состоянием направленного внимания не только в коре, но и в таламусе (Murthy V.N., Fetz E.E., 1992). На частоте гамма-колебаний обнаружено явление синхронизации вызванных ответов у нейронов коры. Синхронизацию вызывают сенсорное воздействие (Gray C.M., Singer W., 1989), решение сенсомотор-
90
ной задачи (Murthy V.N., Fetz E.E., 1992) и другие активирующие факторы. Осцилляции 40 Гц появляются у нейронов синхронно и в фазе. Они могут охватывать нейроны как сенсорной, так и моторной коры. Высокочастотная электрическая стимуляция РФ ствола мозга, вызывающая генерализованную реакцию активации в коре, одновременно усиливает гамма-колебания (45 Гц), которые отражаются и в фокальных потенциалах зрительной коры (поле 17). На этом фоне можно наблюдать синхронизацию вызванных ответов нейронов зрительной коры, которые избирательно реагируют на одно и то же физическое свойство стимула, например на движущуюся в определенном направлении полоску (Munk M.H.Y. et al., 1996).
Механизм генерации ритмов мозга связывают с работой пейсме-керных систем— ритмоводителей. До недавнего времени пейсмеке-ры ритмической активности, в частности таламуса, представляли в виде нейронной сети с реверберацией возбуждения, которая римичес-ки прерывается через механизм обратной связи (Verzeano M., 1972; Andersen P., Andersson S.A., 1968; Данилова Н.Н., 1985).
Однако в последнее время все больше подчеркивается роль пей-смекерных нейронов в генезе ритмов мозга. Пейсмекерный нейрон порождает градуальные эндогенные потенциалы, которые, достигая порога, запускают генерацию ПД. У такого нейрона ритмический эндогенный потенциал регистрируется даже после полной изоляции нейрона. Изучение механизмов генерации пейсмекерных осцилляции показывает, что римическая активность мозга скорее всего представляет тот тип пейсмекерных потенциалов, появление которых определяется взаимодействием потенциалзависимых кальциевых каналов и кальцийзависимых калиевых каналов. Пейсмекерный цикл в таких нейронах включает следующую цепочку реакций:
• активация потенциалзависимых Са2+-каналов и как следствие — увеличение деполяризации нейронов;
• активация кальцийзависимых К-каналов, определяющих волну гиперполяризации;
• инактивация Са2+-каналов из-за снижения притока ионов Са2+ в клетку вследствие гиперполяризации мембраны в результате открытия К-каналов;
• инактивация (закрытие) Са2+-зависимых К-каналов за счет снижения внутриклеточной концентрации ионов кальция;
• активация (деполяризация мембраны) под влиянием гиперполяризации Na-каналов. Последняя служит началом для следующего цикла.
Потенциалзависимые кальциевые каналы делятся на низкопороговые и высокопороговые. Высокопороговая кальциевая проводи-
91
мость в основном представлена на дендритах, тогда как низкопороговые кальциевые каналы локализованы преимущественно на соме клетки (Llinas R., 1988). Активация пейсмекерного нейрона (появление пейсмекерных волн) начинается с открытия низкопороговых потенциалзависимых кальциевых каналов. Обычно это уже происходит при гиперполяризации нейрона. Высокопороговые кальциевые каналы для своего открытия требуют деполяризации нейрона. Возможен переход от пейсмекерной активности, определяемой низкопороговыми кальциевыми каналами, к активности, создаваемой высокопороговыми каналами. Для этого нужно, чтобы пейсмекерные волны достигли уровня деполяризации, соответствующей порогу срабатывания высокопороговых кальциевых каналов. Это ведет к появлению кальциевых ПД, а если достигается порог срабатывания и натриевых каналов, то возникает и натриевый ПД. Обе группы ПД складываются и создают источник длительной ритмической активности. То, что разнопорого-вые кальциевые каналы могут находиться на одном нейроне, определяет способность нейрона генерировать ритмическую активность в разных частотных диапазонах. Переход от генерации ритма в одном частотном диапазоне к другому может быть связан со сменой локуса активированных кальциевых каналов. При этом выбор ионных каналов для генерации ритма определяется уровнем мембранного потенциала.
Различают два типа пейсмекерных нейронов: с плавающей и постоянной частотой. Первый тип пейсмекера меняет частоту своих колебаний в зависимости от уровня деполяризации нейрона. Чем больше она, тем выше частота. К этому типу относятся пейсмекерные клетки медиального септума, определяющего тета-ритм животных. Второй тип пейсмекера характеризуется фиксированной частотой ритма. Нейроны этого типа обнаружены в неспецифическом таламусе — это нейроны с резонансной частотой (со свойством авторитмичности). Частота, на которой возникает резонанс у пейсмекерного нейрона, зависит от плотности потенциалзависимых кальциевых каналов и кальцийзависимых калиевых каналов. За счет высокой их плотности крутизна восходящего фронта пейсмекерной волны увеличивается, а длительность самой волны сокращается, что ведет к укорочению пейсмекерного цикла и увеличению частоты ритма.
Зависимость частоты ритмической активности нейрона от его мембранного потенциала установлена для нейронов таламуса. Если клетка слегка деполяризована, она работает на частоте 10 Гц. С гиперполяризацией нейрона частота его пачечных разрядов снижается до частоты 6 Гц.
92
Полагают, что гамма-колебания возникают на дендритах специфических нейронов таламуса за счет работы высокопороговых кальциевых каналов. Особую роль в генезе ритмов 40 Гц в коре приписывают интраламинарньш ядрам таламуса, особенно n.centralis lateralis (n.CL). Нейроны n.CL во время бодрствования и парадоксального сна разряжаются частыми пачками спай ков (20— 80 Гц). Внутри пачки ПД следуют с частотой 800—1000 Гц. Чем больше деполяризован нейрон, тем выше у него частота пачек спайков. Во время активного бодрствования нейроны n.CL генерируют ритм 20—40 Гц, во время сонных веретен его частота снижается до 7—14 Гц (Steriade M. et al., 1993). Генерацию интраламинар-ными ядрами ритма 40 Гц связывают с появлением у них резонансного состояния, которое обеспечивает широкое распространение гамма-колебаний по коре. ,
Генерация гамма-колебаний обнаружена и у ретикулярного ядра таламуса (п.Ret). В нем найдены нейроны с потенциалзависимым механизмом, который генерирует одиночные спайки с частотой 40 Гц. Эти нейроны оканчиваются ГАМК-ергическими синапсами на нейронах других ядер таламуса. При этом n.Ret имеет мощные норадренергические, серотонинергические и холинергические входы. Полагают, что это ядро играет важную роль в генезе и распространении на кору гамма-колебаний, которые многими исследователями рассматриваются как ЭЭГ-коррелят произвольного внимания. Усиление ритма 40 Гц в коре, так же как и реакция ЭЭГ-десинхронизации, имеет холинергическую природу. Электрическая стимуляция холинергических ядер моста и среднего мозга вызывает в таламо-кортикальной системе появление осцилляции 40 Гц. Данный эффект опосредован мускариновыми рецепторами неокортекса. Синхронизация нейронной активности на частоте гамма-колебаний отражает особую форму реакции активации, которая часто наблюдается во время произвольного внимания. Эта активация направлена на сенсорную и моторную группировку, т.е. на интеграцию нейронов в функциональные системы, эффективно обеспечивающие как процесс восприятия, так и выполнение определенного сенсомоторного акта.
5.11. РАЗЛИЧНЫЕ ВИДЫ ВНИМАНИЯ И ПРОСТРАНСТВЕННЫЕ КАРТИНЫ АКТИВАЦИИ МОЗГА ПО ДАННЫМ ЛМКТ, ПЭТ
Первоначально внимание исследовалось исключительно в связи с сенсорными процессами. Однако в 70-х годах появились работы, в которых рассматривалась необходимость распространения его
93
и на движение. После того как было введено понятие сенсорной установки как перцептивной готовности, влияющей на анализ входных сигналов, стали говорить о моторном внимании как селективной установке, действующей на уровне выходных сигналов. Моторное внимание необходимо для выбора и запуска моторной программы. Кроме того, оно необходимо для функционирования обратной связи о результатах движения. От этого зависит точность выполнения моторной программы. С автоматизацией сложной моторной программы вклад внимания, ориентированного на сигналы обратной связи, уменьшается. Моторное внимание также используется при «ментальной тренировке», к которой часто прибегают спортсмены, чтобы поддержать выработанный навык на хорошем уровне. Она представляет собой «проигрывание» в воображении в замедленном темпе последовательности всех движений, составляющих навык. Ментальная тренировка использует идеомо-торный акт1 — способность представления о движении посылать импульсы к мышцам, принимающим участие в данном движении. Идеомоторный акт — непроизвольная, неосознаваемая и слабая реакция, которая, однако, может быть усилена произвольным вниманием.
Внимание имеет отношение не только к сенсорным и моторным процессам, но и к ментальной, мыслительной деятельности мозга. Наше мышление связано с актуализацией следов долговременной памяти, которые она использует как исходный материал для внутреннего анализа. Текущая умственная деятельность регулируется некоторой целью и направлена на ее достижение. В памяти хранится «решение» того, что должно быть достигнуто в результате умственной деятельности. И эта цель время от времени контролирует процесс мышления. Это и составляет суть ментального внимания, которое принципиально ничем не отличается от сенсорного и моторного контроля. В последние годы применение методов измерения метаболической активности мозга (ЛМКТ, ПЭТ и др.) позволило получить новые данные о связи различных видов внимания (сенсорного, моторного, ментального) с определенными структурами мозга.
Как уже говорилось в главе 2 («Методы в психофизиологических исследованиях»), ЛМКТ позволяет определять структуры мозга, принимающие участие в выполнении той или иной деятельности субъекта, так как локальный энергетический метаболизм является локальной функцией от локального кровотока. П. Роланд
1 Идеомоторный акт произошел от греч. idea — идея, образ, лат. motor — приводящий в движение и actus — движение, действие.
94
(Roland P.E., 1981; Roland P.E., Friberg L., 1985) для изучения сенсорного внимания применил нетомографический метод измерения ЛМКТ, позволяющий контролировать его только на корковом уровне. При измерении ЛМКТ в 254 участках от одного полушария, когда испытуемый в течение 40 с непрерывно фокусировал свое внимание на кончике указательного пальца в ожидании слабого прикосновения, было обнаружено увеличение кровотока в контралатеральной пальцу соматосенсорной коре на 25% относительно уровня покоя. При этом сильное механическое воздействие на тот же палец вызывало меньшее увеличение ЛМКТ, чем селективное внимание. Увеличение кровотока в соматосенсорной коре было соматотопическим. Когда внимание субъекта смещалось с пальца на верхнюю губу, увеличение ЛМКТ наблюдалось в контралатерально^й соматосенсорной области в зоне проекции рта, а не пальца. В дальнейшем П. Роланд в соматосенсорной коре обнаружил два источника усиления ЛМКТ: один — модально-специфический, реагирующий на соматический стимул независимо от того, игнорируется ли он или привлекает внимание, другой — неспецифический, связанный с вниманием. Сходные результаты были получены для зрительной и слуховой модальности стимулов соответственно в зрительной и слуховой сенсорной коре.
Под влиянием внимания к стимулу кровоток усиливается не только в сенсорных зонах коры, но и во фронтальных областях мозга, где выделяют две зоны: фронтальную и префронтальную кору. Во фронтальной коре место, где увеличивается кровоток, зависит от модальности стимула, привлекающего внимание. Для зрительной, слуховой и соматосенсорной модальности в этой зоне были обнаружены различные паттерны усиления ЛМКТ. В префрон-тальной коре, согласно П. Роланду (Roland P.E., 1982), усиление ЛМКТ связано с вниманием и не зависит от модальности. В опытах, в которых субъект решал задачу обнаружения сигнала определенной модальности и игнорировал стимулы других при предъявлении последовательностей, состоящих из зрительных, слуховых и соматических стимулов, селективное внимание независимо от модальности релевантного стимула усиливало ЛМКТ в центральной зоне передней префронтальной коры.
Две системы внимания были выделены М. Познером (M.I. Posner) с сотрудниками. Обобщая результаты некоторых исследований, полученных методом ПЭТ, а также свои работы по изучению семантического восприятия, они (Posner M.I. et al., 1988; Posner M.I., Petersen S.E., 1990) выделили заднюю зрительно-пространственную и переднюю системы внимания. Исследователи считают, что
95
Зрительные образы слов
Рис. 23. Локализация основных центров внимания (активации), причастных к обработке семантической информации, по Познеру (PosnerM.,
PetersenS., 1990).
а — латеральная; б — медиальная сторона полушария.
задняя париетальная кора не активируется при зрительном предъявлении слов. Но уже простые задания, требующие от испытуемого контроля за стимулами, поступающими через зрительный вход, или их мысленного представления, усиливают мозговой кровоток в задней париетальной коре, которая и получила название задней системы внимания.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59