https://wodolei.ru/catalog/kuhonnie_moyki/uglovie/
Предполагается, что в случае возникновения безусловного ОР речь идет о несовпадении сигналов, поступающих от нейронов-детекторов признаков, возбуждаемых действующим стимулом, с энграммой в виде матрицы потенцированных синапсов на нейронах новизны. Появление условного ОР определяется совпадением сенсорного стимула с энграммой — потенцированными синапсами на нейронах гиппокампа от единиц долговременной памяти (на нейронах тождества).
Условный ОР возникает на импульсы согласования при совпадении стимула с шаблоном, произвольно извлекаемым из долговременной памяти в рабочую, в которой он удерживается в активном состоянии. В этот процесс вовлекаются структуры гиппокамп — префронтальная кора. В ПСС сигналы согласования или совпадения представлены ПН. Сигнал совпадения (реакция нейронов тождества) достигает активирующей системы и вызывает появление условного ОР (один из видов произвольного внимания), направленного на обработку значимого стимула. В случае несовпадения стимула с шаблоном, извлеченным из долговременной памяти, нейроны тождества реагируют торможением и условный ОР не появляется. При этом те же стимулы могут вызывать безусловный ОР за счет реакции нейронов новизны, сигналы которых достигают активирующей системы мозга.
Когда импульсы рассогласования возникают при несовпадении стимула с коротко живущей энграммой, появляется HP — показатель автоматического различения на уровне предвнимания. HP — начальная фаза в цепочке когнитивных операций, запускающей безусловный ориентировочный рефлекс на новизну.
5.8. ВНИМАНИЕ, АКТИВАЦИЯ, ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ, БОДРСТВОВАНИЕ
С точки зрения физиологических механизмов внимание может быть сопоставлено с реакцией активации. Термин «реакция активации» был введен после открытия в 1949 г. Г. Мэгуном и Дж. Мо-
78
руцци (Н. Magoun, G. Moruzzi) в среднем мозге ретикулярной формации (неспецифической системы), регулирующей уровень активности коры больших полушарий и мозга в целом. Реакция активации означает увеличение возбудимости, лабильности и реактивности тех нервных структур, в которых она представлена. Ее можно вызвать сенсорными раздражениями или электрической стимуляцией ретикулярной формации. Появление реакции активации отражается в смене паттерна электрической активности мозга. Ее структура зависит от фоновой ЭЭГ. В условиях сна реакция активации означает переход от глубоких стадий сна к поверхностным или полное пробуждение от сна (реакция arousal). Поэтому термины «активация» и «arousal» часто употребляют как синонимы. В условиях спокойного бодрствования реакция активации представлена блокадой (десинхронизацией) альфа-ритма и/или усилением бета- и гамма-колебаний. Реакция активации многокомпонентна, она включает, помимо электроэнцефалографи-ческих, также вегетативные, моторные, биохимические и другие изменения.
Локальная активация, охватывающая ограниченные зоны мозга, определяет селективный, избирательный характер внимания. В случае, когда активация становится генерализованной и охватывает мозг в целом, говорят об изменении уровня активации, или функционального состояния. Последнее определяют как фоновую активность нервных центров, при которой реализуется та или иная конкретная деятельность человека. Поведенческим выражением функционального состояния является уровень бодрствования (Блок В., 1970). Шкала уровней бодрствования, от глубокого сна до крайнего возбуждения, представляет интенсивную характеристику поведения. Чтобы понять, как возникает селективная активация в мозге, создающая физиологическую основу произвольного и непроизвольного внимания, необходимо детально рассмотреть структуру и функции так называемой модулирующей системы мозга, объединяющей как активирующие, так и инактивирую-щие мозговые центры.
5.9. МОДУЛИРУЮЩАЯ СИСТЕМА МОЗГА
Модулирующая система мозга реализует свои функции через особый класс функциональных систем, регулирующих процессы активации в составе различных видов деятельности. Она регулирует цикл бодрствование — сон, стадии и фазы сна, уровни и специфику функциональных состояний во время бодрствования, а также процессы внимания благодаря ее способности создавать как
79
локальные, так и генерализованные эффекты активации и инактивации в нервной системе.
Модулирующая система мозга представлена многими активирующими и инактивирующими структурами, находящимися в сложных взаимоотношениях друг с другом и локализованными на разных уровнях ЦНС. Среди них выделяют неспецифическую систему (ретикулярную формацию) среднего мозга, которая регулирует состояние и вызывает генерализованные и тонические реакции активации, а также активирующую—инактивирующую систему неспецифического таламуса, причастную к возникновению локальных и фазических реакций активации. К структурам с тормозными функциями относят синхронизирующий центр Моруц-ци в срединной части варолиевого моста ствола мозга, преопти-ческую область латерального гипоталамуса. Тормозные функции выявлены и у фронтальной коры. Важную роль в регуляции цикла бодрствование—сон, формировании парадоксального сна с быстрыми движениями глаз (REM sleep), а также ортодоксального сна (NREM sleep) играет комплекс синего пятна (locus coeruleus) и ядер шва (n.raphe). Синее пятно — скопление нейронов в покрышке ствола мозга, в котором осуществляется синтез НА. Последний в составе переднемозгового пучка доставляется в кору и передний мозг. Ядра шва, локализованные в средней части продолговатого мозга, моста и среднего мозга, являются центром синтеза серото-нина, который по системе длинных волокон достигает многих структур мозга: коры, латерального гипоталамуса, гиппокампа и др.
5.9.1. Гетерогенность модулирующей системы
Ранее предполагалось, что по динамике любой из физиологических реакций (ЭЭГ, ЭМГ, диаметр зрачка, кожное сопротивление, ЧСС), испытывающих влияние неспецифической системы, можно предсказать изменение всех остальных реакций. Такой подход основывался на концепции Д. Линдсли (D. Lindsley) о единстве и синергизме влияний от восходящих и нисходящих неспецифических систем мозга, обусловливающих параллелизм всех элек-троэнцефалографических, вегетативных и двигательных реакций. Предполагалось, что активация в ЭЭГ (проявление действия восходящей активирующей неспецифической системы) развивается параллельно эффектам нисходящей неспецифической системы в виде соматических и вегетативных реакций (изменения тонуса мышц, движения глаз, изменения частоты дыхания и сердцебиения, КГР, изменения диаметра сосудов). Однако в дальнейшем
80
между ними были найдены очень низкие коэффициенты корреляции. На основе обзора литературных данных Р. Лазарус (R. Lazarus) приходит к выводу, что максимальные значения коэффициентов корреляции не превышали 0,5.
Кроме того, при определенных условиях была обнаружена диссоциация между поведенческой и электроэнцефалографической активациями. Так, введение атропина собаке вызывало ЭЭГ-кар-тину медленного сна, при этом животное поведенчески продолжало бодрствовать. Аналогичные данные были получены и на кошках. С помощью физостигмина у них можно было вызвать активацию на ЭЭГ, но поведенчески животное могло находиться в состоянии дремоты. Дж. Моруцци показал, что если перерезать ствол мозга выше варолиевого моста, но ниже ретикулярной формации, то в результате прерывания синхронизирующих влияний, поступающих из него в кору, в ЭЭГ развивается десинхронизация. В это время животное может спать.
Более того, в 1957 г. Дж. Лейси (J. Lacey) впервые обнаружил реципрокные отношения между вегетативными и электроэнцефа-лографическими показателями активации. В его опытах появление депрессии альфа-ритма сочеталось не с ростом ЧСС, а с ее снижением. Этот комплекс реакций в дальнейшем был связан с ориентировочным рефлексом. Полученные данные легли в основу концепции Дж. Лейси о «дирекционной фракционности активации», согласно которой неспецифическая активация мозга обеспечивается несколькими субсистемами активации. Каждая из них проявляется в своих вегетативных, моторных и электроэнцефалографи-ческих реакциях.
П.К. Анохину принадлежит концепция «специфичности неспецифической активации». Она утверждает, что каждый тип мотивации обеспечивается возбуждением собственной неспецифической активирующей системы, обладающей особой химической специфичностью. В опытах на кроликах он выделил и описал различные паттерны ЭЭГ для оборонительных, пищевых и ориентировочных мотивационных состояний. Применяя различные фармакологические вещества, он продемонстрировал возможность избирательной блокады каждого из них. На необходимость выделять две системы активации — лимбическую и ретикулярную формации с их относительным антагонизмом — указывал А. Роуттен-берг (Routtenberg А.). По его мнению, активирующая ретикулярная формация обеспечивает энергетическую базу исполнения реакций, тогда как лимбическая система связана с подготовительными фазами поведения и преимущественно имеет отношение к вегетативной активации.
81
6-462
5.9.2. Субсистемы активации
Изучение биохимических основ активационных процессов в мозге и роли в этом основных медиаторов позволяет выделять три главные системы активации, причастные к регуляции уровня бодрствования и реакции активации. Это стволово-таламо-кортикаль-ная система, базальная холинергическая система переднего мозга и каудо-таламо-кортикальная система.
5.9.2.1. Стволово-таламо-кортикальная система
Открытие Г. Мэгуном и Дж. Моруцци в 1949 г. в среднем мозге неспецифической, ретикулярной формации (РФ) сыграло огромную роль в раскрытии механизмов реакции активации. В опытах с электрической стимуляцией РФ и отключением ее хирургическими и фармакологическими методами они установили, что уровень активности коры больших полушарий находится под непрерывным контролем ретикулярной формации. Высокочастотная электрическая стимуляция РФ пробуждает животное от сна и поддерживает его бодрствование. У бодрствующей обезьяны электрическое раздражение РФ сокращает время реакции на сигнальный стимул и уменьшает дифференцировочный временной порог — критический интервал различения следующих друг за другом вспышек света. Противоположный успокаивающий эффект имеет электрическая стимуляция на низкой частоте. Перерезка ствола мозга, отсекающая активирующую РФ (препарат cervea isole), вызывала на ЭЭГ картину сна, характерную для спящего животного.
РФ долгое время рассматривалась как главная система активации с восходящими проекциями, облегчающими сенсорные процессы, и нисходящими путями, облегчающими моторную активность. Позже неспецифическая система активации была найдена в таламусе. Для изучения ее функций Г. Джаспер (Н. Jasper) использовал реакцию вовлечения (recruting response). Эта реакция возникает в ответ на ритмическую электрическую стимуляцию неспецифических ядер таламуса и состоит в воспроизведении биопотенциалами коры ритма электрического раздражения. Реакция вовлечения использовалась для моделирования ЭЭГ медленновол-нового сна. Применение сенсорных раздражителей разной модальности на этом фоне вызывало блокаду волн вовлечения, что рассматривалось как аналог реакции активации. На такой модели впервые было показано существование локальных реакций активации, они были модально-специфичны и возникали в коре того анали-
82
31
5 I
_1 с I — 100 мкВ
v^«4l^wн?^tyJ^'vЧ^
мс
и -и •!
пин HI «ни»
Рис. 21. Параллельное возникновение реакций активации и инактивации
в суммарной электрической активности мозга кролика и у двух нейронов
неспецифического таламуса.
Суммарная электрическая активность регистрировалась от дорзального гиппокампа (2), неспецифического таламуса (3), ретикулярной формации среднего мозга (4), зрительной (5) и лобной (6) коры; 1 — запись ЭМГ. Запись нейронной активности (внизу) по времени совпадает с участком суммарной активности мозга, выделенным двумя пунктирными линиями. Виден переход нейронов от пачечной активности к одиночным разрядам, совпадающий с активацией в суммарной активности мозга (после спонтанного движения) (по Н.Н. Даниловой, 1985).
затора, для которого модальность сенсорного стимула была адекватной. В 1955 г. Джаспер изложил свою теорию о диффузно-проек-ционной таламической системе, согласно которой неспецифические ядра таламуса через линии своих проекций на кору вызывают на ЭЭГ реакцию десинхронизации — разрушение регулярной мед-ленноволновой активности.
Таламическое происхождение реакций активации в коре в дальнейшем получило подтверждение при параллельной регистрации ЭЭГ коры и нейронной активности неспецифических ядер таламуса. Показано, что сенсорные раздражения (звуковое, кожное и др.) вызывают у нейронов неспецифического таламуса реакцию десинхронизации в виде разрушения пачек спайков и замены их одиночными потенциалами действия (ПД) (Данилова Н.Н., 1968, 1985). Нейронная таламическая реакция десинхронизации соответствует появлению на ЭЭГ реакции активации, которая выглядит
83
Рис. 22. Угасание и растормаживание реакции активации у нейронов неспецифического таламуса, измеренной по длительности десинхрониза-ции пачечной активности (а) и сумме одиночных ПД (б). Реакция вызывалась звуковыми щелчками (10/с). Кружком отмечен экстрараздражитель
(звуковые щелчки 4/с).
как блокада медленных ритмов ЭЭГ или появление гиппокампаль-ного тета-ритма. На рис. 21 показана связь импульсной активности двух нейронов таламуса с электрической активностью коры и подкорковых структур у кролика. Видны усиление пачечной активности нейронов во время медленных волн и замена их одиночными спайками во время реакции ЭЭГ-активации.
Реакция десинхронизации нейронов неспецифического таламуса обладает свойствами ОР. С повторением стимула она ослабевает и восстанавливается после экстрараздражителя. Рис. 22 демонстрирует динамику одного из таких нейронов, реакция которого оценивалась по продолжительности нейронной реакции десинхронизации и по частоте одиночных спайков во время нее.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
Условный ОР возникает на импульсы согласования при совпадении стимула с шаблоном, произвольно извлекаемым из долговременной памяти в рабочую, в которой он удерживается в активном состоянии. В этот процесс вовлекаются структуры гиппокамп — префронтальная кора. В ПСС сигналы согласования или совпадения представлены ПН. Сигнал совпадения (реакция нейронов тождества) достигает активирующей системы и вызывает появление условного ОР (один из видов произвольного внимания), направленного на обработку значимого стимула. В случае несовпадения стимула с шаблоном, извлеченным из долговременной памяти, нейроны тождества реагируют торможением и условный ОР не появляется. При этом те же стимулы могут вызывать безусловный ОР за счет реакции нейронов новизны, сигналы которых достигают активирующей системы мозга.
Когда импульсы рассогласования возникают при несовпадении стимула с коротко живущей энграммой, появляется HP — показатель автоматического различения на уровне предвнимания. HP — начальная фаза в цепочке когнитивных операций, запускающей безусловный ориентировочный рефлекс на новизну.
5.8. ВНИМАНИЕ, АКТИВАЦИЯ, ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ, БОДРСТВОВАНИЕ
С точки зрения физиологических механизмов внимание может быть сопоставлено с реакцией активации. Термин «реакция активации» был введен после открытия в 1949 г. Г. Мэгуном и Дж. Мо-
78
руцци (Н. Magoun, G. Moruzzi) в среднем мозге ретикулярной формации (неспецифической системы), регулирующей уровень активности коры больших полушарий и мозга в целом. Реакция активации означает увеличение возбудимости, лабильности и реактивности тех нервных структур, в которых она представлена. Ее можно вызвать сенсорными раздражениями или электрической стимуляцией ретикулярной формации. Появление реакции активации отражается в смене паттерна электрической активности мозга. Ее структура зависит от фоновой ЭЭГ. В условиях сна реакция активации означает переход от глубоких стадий сна к поверхностным или полное пробуждение от сна (реакция arousal). Поэтому термины «активация» и «arousal» часто употребляют как синонимы. В условиях спокойного бодрствования реакция активации представлена блокадой (десинхронизацией) альфа-ритма и/или усилением бета- и гамма-колебаний. Реакция активации многокомпонентна, она включает, помимо электроэнцефалографи-ческих, также вегетативные, моторные, биохимические и другие изменения.
Локальная активация, охватывающая ограниченные зоны мозга, определяет селективный, избирательный характер внимания. В случае, когда активация становится генерализованной и охватывает мозг в целом, говорят об изменении уровня активации, или функционального состояния. Последнее определяют как фоновую активность нервных центров, при которой реализуется та или иная конкретная деятельность человека. Поведенческим выражением функционального состояния является уровень бодрствования (Блок В., 1970). Шкала уровней бодрствования, от глубокого сна до крайнего возбуждения, представляет интенсивную характеристику поведения. Чтобы понять, как возникает селективная активация в мозге, создающая физиологическую основу произвольного и непроизвольного внимания, необходимо детально рассмотреть структуру и функции так называемой модулирующей системы мозга, объединяющей как активирующие, так и инактивирую-щие мозговые центры.
5.9. МОДУЛИРУЮЩАЯ СИСТЕМА МОЗГА
Модулирующая система мозга реализует свои функции через особый класс функциональных систем, регулирующих процессы активации в составе различных видов деятельности. Она регулирует цикл бодрствование — сон, стадии и фазы сна, уровни и специфику функциональных состояний во время бодрствования, а также процессы внимания благодаря ее способности создавать как
79
локальные, так и генерализованные эффекты активации и инактивации в нервной системе.
Модулирующая система мозга представлена многими активирующими и инактивирующими структурами, находящимися в сложных взаимоотношениях друг с другом и локализованными на разных уровнях ЦНС. Среди них выделяют неспецифическую систему (ретикулярную формацию) среднего мозга, которая регулирует состояние и вызывает генерализованные и тонические реакции активации, а также активирующую—инактивирующую систему неспецифического таламуса, причастную к возникновению локальных и фазических реакций активации. К структурам с тормозными функциями относят синхронизирующий центр Моруц-ци в срединной части варолиевого моста ствола мозга, преопти-ческую область латерального гипоталамуса. Тормозные функции выявлены и у фронтальной коры. Важную роль в регуляции цикла бодрствование—сон, формировании парадоксального сна с быстрыми движениями глаз (REM sleep), а также ортодоксального сна (NREM sleep) играет комплекс синего пятна (locus coeruleus) и ядер шва (n.raphe). Синее пятно — скопление нейронов в покрышке ствола мозга, в котором осуществляется синтез НА. Последний в составе переднемозгового пучка доставляется в кору и передний мозг. Ядра шва, локализованные в средней части продолговатого мозга, моста и среднего мозга, являются центром синтеза серото-нина, который по системе длинных волокон достигает многих структур мозга: коры, латерального гипоталамуса, гиппокампа и др.
5.9.1. Гетерогенность модулирующей системы
Ранее предполагалось, что по динамике любой из физиологических реакций (ЭЭГ, ЭМГ, диаметр зрачка, кожное сопротивление, ЧСС), испытывающих влияние неспецифической системы, можно предсказать изменение всех остальных реакций. Такой подход основывался на концепции Д. Линдсли (D. Lindsley) о единстве и синергизме влияний от восходящих и нисходящих неспецифических систем мозга, обусловливающих параллелизм всех элек-троэнцефалографических, вегетативных и двигательных реакций. Предполагалось, что активация в ЭЭГ (проявление действия восходящей активирующей неспецифической системы) развивается параллельно эффектам нисходящей неспецифической системы в виде соматических и вегетативных реакций (изменения тонуса мышц, движения глаз, изменения частоты дыхания и сердцебиения, КГР, изменения диаметра сосудов). Однако в дальнейшем
80
между ними были найдены очень низкие коэффициенты корреляции. На основе обзора литературных данных Р. Лазарус (R. Lazarus) приходит к выводу, что максимальные значения коэффициентов корреляции не превышали 0,5.
Кроме того, при определенных условиях была обнаружена диссоциация между поведенческой и электроэнцефалографической активациями. Так, введение атропина собаке вызывало ЭЭГ-кар-тину медленного сна, при этом животное поведенчески продолжало бодрствовать. Аналогичные данные были получены и на кошках. С помощью физостигмина у них можно было вызвать активацию на ЭЭГ, но поведенчески животное могло находиться в состоянии дремоты. Дж. Моруцци показал, что если перерезать ствол мозга выше варолиевого моста, но ниже ретикулярной формации, то в результате прерывания синхронизирующих влияний, поступающих из него в кору, в ЭЭГ развивается десинхронизация. В это время животное может спать.
Более того, в 1957 г. Дж. Лейси (J. Lacey) впервые обнаружил реципрокные отношения между вегетативными и электроэнцефа-лографическими показателями активации. В его опытах появление депрессии альфа-ритма сочеталось не с ростом ЧСС, а с ее снижением. Этот комплекс реакций в дальнейшем был связан с ориентировочным рефлексом. Полученные данные легли в основу концепции Дж. Лейси о «дирекционной фракционности активации», согласно которой неспецифическая активация мозга обеспечивается несколькими субсистемами активации. Каждая из них проявляется в своих вегетативных, моторных и электроэнцефалографи-ческих реакциях.
П.К. Анохину принадлежит концепция «специфичности неспецифической активации». Она утверждает, что каждый тип мотивации обеспечивается возбуждением собственной неспецифической активирующей системы, обладающей особой химической специфичностью. В опытах на кроликах он выделил и описал различные паттерны ЭЭГ для оборонительных, пищевых и ориентировочных мотивационных состояний. Применяя различные фармакологические вещества, он продемонстрировал возможность избирательной блокады каждого из них. На необходимость выделять две системы активации — лимбическую и ретикулярную формации с их относительным антагонизмом — указывал А. Роуттен-берг (Routtenberg А.). По его мнению, активирующая ретикулярная формация обеспечивает энергетическую базу исполнения реакций, тогда как лимбическая система связана с подготовительными фазами поведения и преимущественно имеет отношение к вегетативной активации.
81
6-462
5.9.2. Субсистемы активации
Изучение биохимических основ активационных процессов в мозге и роли в этом основных медиаторов позволяет выделять три главные системы активации, причастные к регуляции уровня бодрствования и реакции активации. Это стволово-таламо-кортикаль-ная система, базальная холинергическая система переднего мозга и каудо-таламо-кортикальная система.
5.9.2.1. Стволово-таламо-кортикальная система
Открытие Г. Мэгуном и Дж. Моруцци в 1949 г. в среднем мозге неспецифической, ретикулярной формации (РФ) сыграло огромную роль в раскрытии механизмов реакции активации. В опытах с электрической стимуляцией РФ и отключением ее хирургическими и фармакологическими методами они установили, что уровень активности коры больших полушарий находится под непрерывным контролем ретикулярной формации. Высокочастотная электрическая стимуляция РФ пробуждает животное от сна и поддерживает его бодрствование. У бодрствующей обезьяны электрическое раздражение РФ сокращает время реакции на сигнальный стимул и уменьшает дифференцировочный временной порог — критический интервал различения следующих друг за другом вспышек света. Противоположный успокаивающий эффект имеет электрическая стимуляция на низкой частоте. Перерезка ствола мозга, отсекающая активирующую РФ (препарат cervea isole), вызывала на ЭЭГ картину сна, характерную для спящего животного.
РФ долгое время рассматривалась как главная система активации с восходящими проекциями, облегчающими сенсорные процессы, и нисходящими путями, облегчающими моторную активность. Позже неспецифическая система активации была найдена в таламусе. Для изучения ее функций Г. Джаспер (Н. Jasper) использовал реакцию вовлечения (recruting response). Эта реакция возникает в ответ на ритмическую электрическую стимуляцию неспецифических ядер таламуса и состоит в воспроизведении биопотенциалами коры ритма электрического раздражения. Реакция вовлечения использовалась для моделирования ЭЭГ медленновол-нового сна. Применение сенсорных раздражителей разной модальности на этом фоне вызывало блокаду волн вовлечения, что рассматривалось как аналог реакции активации. На такой модели впервые было показано существование локальных реакций активации, они были модально-специфичны и возникали в коре того анали-
82
31
5 I
_1 с I — 100 мкВ
v^«4l^wн?^tyJ^'vЧ^
мс
и -и •!
пин HI «ни»
Рис. 21. Параллельное возникновение реакций активации и инактивации
в суммарной электрической активности мозга кролика и у двух нейронов
неспецифического таламуса.
Суммарная электрическая активность регистрировалась от дорзального гиппокампа (2), неспецифического таламуса (3), ретикулярной формации среднего мозга (4), зрительной (5) и лобной (6) коры; 1 — запись ЭМГ. Запись нейронной активности (внизу) по времени совпадает с участком суммарной активности мозга, выделенным двумя пунктирными линиями. Виден переход нейронов от пачечной активности к одиночным разрядам, совпадающий с активацией в суммарной активности мозга (после спонтанного движения) (по Н.Н. Даниловой, 1985).
затора, для которого модальность сенсорного стимула была адекватной. В 1955 г. Джаспер изложил свою теорию о диффузно-проек-ционной таламической системе, согласно которой неспецифические ядра таламуса через линии своих проекций на кору вызывают на ЭЭГ реакцию десинхронизации — разрушение регулярной мед-ленноволновой активности.
Таламическое происхождение реакций активации в коре в дальнейшем получило подтверждение при параллельной регистрации ЭЭГ коры и нейронной активности неспецифических ядер таламуса. Показано, что сенсорные раздражения (звуковое, кожное и др.) вызывают у нейронов неспецифического таламуса реакцию десинхронизации в виде разрушения пачек спайков и замены их одиночными потенциалами действия (ПД) (Данилова Н.Н., 1968, 1985). Нейронная таламическая реакция десинхронизации соответствует появлению на ЭЭГ реакции активации, которая выглядит
83
Рис. 22. Угасание и растормаживание реакции активации у нейронов неспецифического таламуса, измеренной по длительности десинхрониза-ции пачечной активности (а) и сумме одиночных ПД (б). Реакция вызывалась звуковыми щелчками (10/с). Кружком отмечен экстрараздражитель
(звуковые щелчки 4/с).
как блокада медленных ритмов ЭЭГ или появление гиппокампаль-ного тета-ритма. На рис. 21 показана связь импульсной активности двух нейронов таламуса с электрической активностью коры и подкорковых структур у кролика. Видны усиление пачечной активности нейронов во время медленных волн и замена их одиночными спайками во время реакции ЭЭГ-активации.
Реакция десинхронизации нейронов неспецифического таламуса обладает свойствами ОР. С повторением стимула она ослабевает и восстанавливается после экстрараздражителя. Рис. 22 демонстрирует динамику одного из таких нейронов, реакция которого оценивалась по продолжительности нейронной реакции десинхронизации и по частоте одиночных спайков во время нее.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59