https://wodolei.ru/catalog/vanny/170na70cm/
Аналогично направление ориентации спина электрона неотделимо от выбранного экспериментатором способа измерения. Макромир и микромир оказываются тесно связанными. Не стоит надеяться, что полного понимании строения вещества удастся достичь, зная лишь свойства его составных частиц. Только подход к системе как целому дает возможность познания свойств микромира. Большое и малое сосуществуют. Одно не исчерпывает другого, как равным образом второе не “объясняет” полностью первого.
Один из сильнейших ударов по редукционистской концепции нанес разум. Пытаясь свести все системы к функционированию ее более простых компонентов, некоторые ученые пришли, к убеждению, что разум – это активность головного мозга, которая в свою очередь представляет собой не что иное, как серию электрохимических процессов, сводимых к движению электронов и ионов. Столь крайне упрощенный материалистический взгляд сводит мир человеческих мыслей, чувств и ощущений лишь к чисто внешнему проявлению.
В отличие от этого новая физика восстанавливает центральной положение разума в природе. Квантовая теория в обычной интерпретации приобретает смысл лишь с введением того или иного наблюдателя. Акт наблюдения в квантовой физике является не побочным обстоятельством, а средством получения информации, уже существующей во внешнем мире; наблюдатель весьма основательно вмешивается в микромир, и описание, содержащееся в уравнениях квантовой физики, явно включает акт наблюдения. Наблюдение вызывает определенное изменение в физической системе. Стоит только “взглянуть” на атом, как тот совершает характерный переход, не воспроизводимый обычным физическим взаимодействием. Здравый смысл, возможно, и сложил оружие перед лицом новой физики, но во Вселенной, какой рисуют ее последние достижения физической науки, снова нашлось место для человека.
3. Действительность и мир квантов
Лабиринт парадоксов
Летом 1982 г. в Парижском университете был проведен исторический эксперимент. Французский физик Ален Аспек и его сотрудники решили проверить, не удастся ли им “перехитрить” квант. На карту были поставлены не только наиболее плодотворная научная теория, но и сама основа того, что мы считаем физической реальностью.
Как и многие решающие эксперименты в физике, парижский эксперимент восходил к парадоксу, который озадачивал и интриговал физиков и философов на протяжении почти половины века. Речь идет об одной из принципиальных особенностей квантовой физики – о неопределенности. Знаменитый принцип неопределенности Гейзенберга вынуждает вносить существенные поправки в простую, построенную на интуиции картину мира атомов, согласно которой частицы под действием сил движутся по вполне определенным траекториям. В действительности частица, например электрон, движется сложным, почти непредсказуемым образом, и проследить за ее движением в деталях или хотя бы дать его описание невозможно.
До появления квантовой теории физическую Вселенную рассматривали как огромный часовой механизм, ход которого до мельчайших деталей неукоснительно следовал безупречной логике причины и следствия, воплощенной в законах механики Ньютона, Разумеется, законы Ньютона и поныне справедливы для описания большинства явлений в окружающем нас мире. Они направляют пулю к цели и заставляют планеты двигаться точно по орбитам. Но, как мы теперь уже знаем, в масштабах атома многое обстоит совсем иначе. На смену знакомому упорядоченному движению макроскопических тел приходит беспорядок и хаос. Привычные твердые тела на поверку оказываются призрачной мозаикой, образованной всплесками энергии. Квантовая неопределенность убеждает нас, что невозможно всегда все знать о частице. Если, фигурально говоря, вы попытаетесь “пришпилить” частицу к определенному месту, она ускользнет от вас.
Эта неуловимость квантовых частиц доставила немало хлопот физикам при построении квантовой теории. В 20-х годах нашего столетия новая квантовая механика выглядела лабиринтом парадоксов. Хотя Вернер Гейзенберг и Эрвин Шрёдингер были главными строителями квантовой теории, ее интерпретацию предложили Макс Борн и особенно Нильс Бор. Датский физик Бор первым осознал во всей полноте, что квантовая теория в той же мере применима к веществу, как и к излучению, и в последующие годы стал ведущим авторитетом и лидером среди физиков в области концептуальных основ квантовой механики. Институт Бора в Копенгагене был центром исследований по квантовой физике на протяжении более чем десятилетия. Однажды Бор заметил своим коллегам: “Если у человека при первом знакомстве с квантовой механикой голова не идет кругом, то он не понимает в ней ничего”. В своей книге “Физика и философия” Гейзенберг вспоминает о первых мучительных сомнениях по поводу смысла новой квантовой механики:
Я вспоминаю дискуссии с Бором, длившиеся за полночь, которые приводили меня почти в отчаяние. И когда я после таких обсуждений отправлялся на прогулку в соседний парк, передо мной снова и снова возникал вопрос: действительно ли природа может быть столь абсурдной, какой она предстает перед нами в этих атомных экспериментах?
Самым крупным оппонентом квантовой механики был Эйнштейн. Хотя ему самому довелось приложить руку к формулировке квантовой теории, он никогда полностью не разделял ее идей, считая квантовую теорию либо ошибочной, либо в лучшем случае “истинной наполовину”. Известно его изречение: “Бог не играет в кости”. Эйнштейн был убежден, что за квантовым миром с его непредсказуемостью, неопределенностью и беспорядком скрывается привычный классический мир конкретной действительности, где объекты обладают четко определенными свойствами, такими, как положение и скорость, и детерминировано движутся в соответствии с причинно-следственными закономерностями. “Безумие” атомного мира по утверждению Эйнштейна, не является фундаментальным свойством. Это всего лишь фасад, за которым “безумие” уступает место безраздельному господству разума.
Эйнштейн пытался найти это фундаментальное свойство в нескончаемых дискуссиях с Бором – наиболее ярким выразителем взглядов той группы физиков, которые считали квантовую неопределенность неотъемлемой чертой природы, не сводимой к чему-либо другому. Эйнштейн с завидным упорством продолжал свои атаки на квантовую неопределенность, пытаясь придумать гипотетические (“мысленные”, как принято говорить) эксперименты, которые обнаружили бы логический изъян в официальной версии квантовой теории. Бор каждый раз отражал нападки Эйнштейна, опровергая его аргументы.
Особенно памятен один эпизод на конференции, на которой собрались многие ведущие физики Европы в надежде услышать о последних достижениях новой тогда квантовой теории. Эйнштейн направил свою критику против варианта принципа неопределенности, устанавливающего, с какой точностью можно определить энергию частицы и момент времени, когда частица ей обладает. Эйнштейн предложил необычайно остроумную схему, позволяющую обойти неопределенность энергии–времени. Его идея сводилась к точному намерению энергии с помощью взвешивания: знаменитая формула Эйнштейна E= mc2 сопоставляет энергию E и массу т, а массу можно измерить взвешиванием.
На этот раз Бор был обеспокоен, и те, кто видел, как он провожал Эйнштейна в гостиницу, заметили, что Бор был сильно взволнован. Но на следующий день Бор, проведший бессонную ночь за детальным анализом рассуждений Эйнштейна, торжествуя, обратился к участникам конференции. Развивая свои аргументы против квантовомеханической неопределенности, Эйнштейн упустил из виду один важный аспект созданной им самим теории относительности. Согласно этой теории, гравитация замедляет течение времени. А поскольку при взвешивании без гравитации не обойтись, эффектом замедления времени пренебречь нельзя. Бор продемонстрировал, что при надлежащем учете этого аффекта неопределенность восстанавливается на обычном уровне.
Эксперимент Эйнштейна – Подольского – Розена
Самые важные мысленные эксперименты Эйнштейна, не утратившие своего значения и поныне, были предложены лишь в 1935 г., когда вместе со своими коллегами Борисом Подольским и Натаном Розеном он опубликовал в журнале The Physical Review статью, содержащую наиболее убедительную и по сей день формулировку парадоксальной природы квантовой физики. По существу эксперимент Эйнштейна–Подольского–Розена затрагивал старую проблему: может ли частица одновременно обладать определенным положением и определенным импульсом. Задача, которую поставили перед собой Эйнштейн и его коллеги, состояла в том, чтобы придумать схему мысленного эксперимента, позволяющего (по крайней мере в принципе) сколь угодно точно измерить координаты частицы и ее импульс.
К тому времени было общепризнано, что любая попытка непосредственно измерить положение и импульс частицы обречена на провал по простой причине: когда вы пытаетесь измерить положение частицы, само измерение вносит не поддающиеся контролю изменения в величину импульса частицы. В свою очередь измерение импульса аннулирует всю полученную ранее информацию о положении частицы. Измерение одного типа несовместимо с измерением другого типа и аннулирует его результат. И если Эйнштейн надеялся преуспеть в попытке одновременного измерения координат и импульсов, ему надлежало избрать более тонкую стратегию.
Если отвлечься от второстепенных деталей, то суть работы Эйнштейна, Подольского и Розена сводится к следующему. Пусть установлено, что невозможно непосредственно измерить в одно и то же время положение и импульс одной частицы; тогда возникает мысль взять вторую частицу – “сообщницу”. Располагая двумя частицами, можно одновременно измерять большее число величин. Если бы нам удалось каким-то образом заранее связать движение двух частиц то измерения, выполненные одновременно над обеим частицами, позволили бы экспериментатору проникнуть сквозь завесу квантовой неопределенности, непреодолимую по утверждению Бора,
Использованный Эйнштейном и его коллегами принцип достаточно известен. При игре в бильярд, когда шар, по которому игрок ударяет кием, сталкивается с другим шаром, оба они разлетаются в разные стороны. Но их движения не произвольны, а жестко связаны друг с другом законом действия и противодействия – законом сохранения импульса. Измерив импульс одного шара, можно судить об импульсе другого (который может откатиться далеко в сторону), даже непосредственно не наблюдая за ним– Закон сохранения импульса справедлив и для квантовых частиц. Значит, необходимо лишь, чтобы две квантовые частицы, 1 и 2, столкнувшись между собой, провзаимодействовали и разлетелись на большое расстояние. В этот момент можно измерить импульс частицы 1. Зная его, можно, воспользовавшись законом сохранения импульса, точно вычислить импульс частицы 2, которая, собственно, нас и интересует. Измерение импульса частицы 1, разумеется, внесет неопределенность в ее положение, но это несущественно, так как не влияет на положение частицы 2 (а нас интересует именно она), поскольку та находится далеко; в принципе она могла бы располагаться на расстоянии нескольких световых лет. Если в один и тот же момент непосредственно измерить положение частицы 2, то ее положение и импульс станут известны одновременно. Иначе говоря, мы перехитрим принцип неопределенности!
Рассуждения Эйнштейна–Подольского–Розена основаны на двух допущениях, имеющих принципиальное значение. Во-первых, предполагается, что измерение, проведенное в одном месте, не может мгновенно повлиять на частицу, находящуюся далеко от него. Такое допущение основано на том, что взаимодействие между системами ослабевает с расстоянием. Трудно представить, чтобы два электрона, разделенные расстоянием в несколько метров, а тем более световых лет, каким-то неведомым образом влияли на положение и импульс друг друга. Эйнштейн отвергал подобную мысль, называя ее “призрачным действием на расстоянии”.
Отвергая идею мгновенного дальнодействия, Эйнштейн исходил из своего убеждения, что никакой сигнал или воздействие не могут распространяться быстрее света. Это – ключевой момент теории относительности, и им не следовало пренебрегать. Кроме того, невозможность распространения сигналов со скоростью выше скорости света принципиально важна для общего определения прошлого и будущего во Вселенной. Преодоление светового барьера эквивалентно распространению сигналов назад во времени, а это чревато парадоксами.
Второе фундаментальное допущение, из которого исходил Эйнштейн со своими коллегами, было связано с признанием существования “объективной реальности”. Они предполагали, что такие характеристики, как положение и импульс частицы, существуют объективно, даже если частица удалена и эти характеристики непосредственно не наблюдаемы. Именно в этом Эйнштейн расходился с Бором. По мнению Бора, просто нельзя приписывать частице такие характеристики, как положение или импульс, если нет возможности реально их наблюдать. Измерение, выполненное кем-то еще (“по доверенности”) в счет не идет. Использование частицы-"сообщницы" – просто надувательство.
На этом этапе Эйнштейн и Бор могли признать лишь несовпадение своих позиций. Необходим был такой вариант мысленного эксперимента, который позволил бы проверить, нарушается или нет принцип неопределенности на практике. В 60-х годах Джон Белл из ЦЕРНа придумал, как это сделать. Он использовал два основных допущения Эйнштейна, Подольского и Розена (распространение сигналов со скоростью меньше скорости света и существование объективной реальности) для вывода наиболее общих соотношений между измерениями с частицей 1 и измерениями с частицей 2, причем измерениями не только положения и импульса, но и других характеристик, в частности ориентации спина.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Один из сильнейших ударов по редукционистской концепции нанес разум. Пытаясь свести все системы к функционированию ее более простых компонентов, некоторые ученые пришли, к убеждению, что разум – это активность головного мозга, которая в свою очередь представляет собой не что иное, как серию электрохимических процессов, сводимых к движению электронов и ионов. Столь крайне упрощенный материалистический взгляд сводит мир человеческих мыслей, чувств и ощущений лишь к чисто внешнему проявлению.
В отличие от этого новая физика восстанавливает центральной положение разума в природе. Квантовая теория в обычной интерпретации приобретает смысл лишь с введением того или иного наблюдателя. Акт наблюдения в квантовой физике является не побочным обстоятельством, а средством получения информации, уже существующей во внешнем мире; наблюдатель весьма основательно вмешивается в микромир, и описание, содержащееся в уравнениях квантовой физики, явно включает акт наблюдения. Наблюдение вызывает определенное изменение в физической системе. Стоит только “взглянуть” на атом, как тот совершает характерный переход, не воспроизводимый обычным физическим взаимодействием. Здравый смысл, возможно, и сложил оружие перед лицом новой физики, но во Вселенной, какой рисуют ее последние достижения физической науки, снова нашлось место для человека.
3. Действительность и мир квантов
Лабиринт парадоксов
Летом 1982 г. в Парижском университете был проведен исторический эксперимент. Французский физик Ален Аспек и его сотрудники решили проверить, не удастся ли им “перехитрить” квант. На карту были поставлены не только наиболее плодотворная научная теория, но и сама основа того, что мы считаем физической реальностью.
Как и многие решающие эксперименты в физике, парижский эксперимент восходил к парадоксу, который озадачивал и интриговал физиков и философов на протяжении почти половины века. Речь идет об одной из принципиальных особенностей квантовой физики – о неопределенности. Знаменитый принцип неопределенности Гейзенберга вынуждает вносить существенные поправки в простую, построенную на интуиции картину мира атомов, согласно которой частицы под действием сил движутся по вполне определенным траекториям. В действительности частица, например электрон, движется сложным, почти непредсказуемым образом, и проследить за ее движением в деталях или хотя бы дать его описание невозможно.
До появления квантовой теории физическую Вселенную рассматривали как огромный часовой механизм, ход которого до мельчайших деталей неукоснительно следовал безупречной логике причины и следствия, воплощенной в законах механики Ньютона, Разумеется, законы Ньютона и поныне справедливы для описания большинства явлений в окружающем нас мире. Они направляют пулю к цели и заставляют планеты двигаться точно по орбитам. Но, как мы теперь уже знаем, в масштабах атома многое обстоит совсем иначе. На смену знакомому упорядоченному движению макроскопических тел приходит беспорядок и хаос. Привычные твердые тела на поверку оказываются призрачной мозаикой, образованной всплесками энергии. Квантовая неопределенность убеждает нас, что невозможно всегда все знать о частице. Если, фигурально говоря, вы попытаетесь “пришпилить” частицу к определенному месту, она ускользнет от вас.
Эта неуловимость квантовых частиц доставила немало хлопот физикам при построении квантовой теории. В 20-х годах нашего столетия новая квантовая механика выглядела лабиринтом парадоксов. Хотя Вернер Гейзенберг и Эрвин Шрёдингер были главными строителями квантовой теории, ее интерпретацию предложили Макс Борн и особенно Нильс Бор. Датский физик Бор первым осознал во всей полноте, что квантовая теория в той же мере применима к веществу, как и к излучению, и в последующие годы стал ведущим авторитетом и лидером среди физиков в области концептуальных основ квантовой механики. Институт Бора в Копенгагене был центром исследований по квантовой физике на протяжении более чем десятилетия. Однажды Бор заметил своим коллегам: “Если у человека при первом знакомстве с квантовой механикой голова не идет кругом, то он не понимает в ней ничего”. В своей книге “Физика и философия” Гейзенберг вспоминает о первых мучительных сомнениях по поводу смысла новой квантовой механики:
Я вспоминаю дискуссии с Бором, длившиеся за полночь, которые приводили меня почти в отчаяние. И когда я после таких обсуждений отправлялся на прогулку в соседний парк, передо мной снова и снова возникал вопрос: действительно ли природа может быть столь абсурдной, какой она предстает перед нами в этих атомных экспериментах?
Самым крупным оппонентом квантовой механики был Эйнштейн. Хотя ему самому довелось приложить руку к формулировке квантовой теории, он никогда полностью не разделял ее идей, считая квантовую теорию либо ошибочной, либо в лучшем случае “истинной наполовину”. Известно его изречение: “Бог не играет в кости”. Эйнштейн был убежден, что за квантовым миром с его непредсказуемостью, неопределенностью и беспорядком скрывается привычный классический мир конкретной действительности, где объекты обладают четко определенными свойствами, такими, как положение и скорость, и детерминировано движутся в соответствии с причинно-следственными закономерностями. “Безумие” атомного мира по утверждению Эйнштейна, не является фундаментальным свойством. Это всего лишь фасад, за которым “безумие” уступает место безраздельному господству разума.
Эйнштейн пытался найти это фундаментальное свойство в нескончаемых дискуссиях с Бором – наиболее ярким выразителем взглядов той группы физиков, которые считали квантовую неопределенность неотъемлемой чертой природы, не сводимой к чему-либо другому. Эйнштейн с завидным упорством продолжал свои атаки на квантовую неопределенность, пытаясь придумать гипотетические (“мысленные”, как принято говорить) эксперименты, которые обнаружили бы логический изъян в официальной версии квантовой теории. Бор каждый раз отражал нападки Эйнштейна, опровергая его аргументы.
Особенно памятен один эпизод на конференции, на которой собрались многие ведущие физики Европы в надежде услышать о последних достижениях новой тогда квантовой теории. Эйнштейн направил свою критику против варианта принципа неопределенности, устанавливающего, с какой точностью можно определить энергию частицы и момент времени, когда частица ей обладает. Эйнштейн предложил необычайно остроумную схему, позволяющую обойти неопределенность энергии–времени. Его идея сводилась к точному намерению энергии с помощью взвешивания: знаменитая формула Эйнштейна E= mc2 сопоставляет энергию E и массу т, а массу можно измерить взвешиванием.
На этот раз Бор был обеспокоен, и те, кто видел, как он провожал Эйнштейна в гостиницу, заметили, что Бор был сильно взволнован. Но на следующий день Бор, проведший бессонную ночь за детальным анализом рассуждений Эйнштейна, торжествуя, обратился к участникам конференции. Развивая свои аргументы против квантовомеханической неопределенности, Эйнштейн упустил из виду один важный аспект созданной им самим теории относительности. Согласно этой теории, гравитация замедляет течение времени. А поскольку при взвешивании без гравитации не обойтись, эффектом замедления времени пренебречь нельзя. Бор продемонстрировал, что при надлежащем учете этого аффекта неопределенность восстанавливается на обычном уровне.
Эксперимент Эйнштейна – Подольского – Розена
Самые важные мысленные эксперименты Эйнштейна, не утратившие своего значения и поныне, были предложены лишь в 1935 г., когда вместе со своими коллегами Борисом Подольским и Натаном Розеном он опубликовал в журнале The Physical Review статью, содержащую наиболее убедительную и по сей день формулировку парадоксальной природы квантовой физики. По существу эксперимент Эйнштейна–Подольского–Розена затрагивал старую проблему: может ли частица одновременно обладать определенным положением и определенным импульсом. Задача, которую поставили перед собой Эйнштейн и его коллеги, состояла в том, чтобы придумать схему мысленного эксперимента, позволяющего (по крайней мере в принципе) сколь угодно точно измерить координаты частицы и ее импульс.
К тому времени было общепризнано, что любая попытка непосредственно измерить положение и импульс частицы обречена на провал по простой причине: когда вы пытаетесь измерить положение частицы, само измерение вносит не поддающиеся контролю изменения в величину импульса частицы. В свою очередь измерение импульса аннулирует всю полученную ранее информацию о положении частицы. Измерение одного типа несовместимо с измерением другого типа и аннулирует его результат. И если Эйнштейн надеялся преуспеть в попытке одновременного измерения координат и импульсов, ему надлежало избрать более тонкую стратегию.
Если отвлечься от второстепенных деталей, то суть работы Эйнштейна, Подольского и Розена сводится к следующему. Пусть установлено, что невозможно непосредственно измерить в одно и то же время положение и импульс одной частицы; тогда возникает мысль взять вторую частицу – “сообщницу”. Располагая двумя частицами, можно одновременно измерять большее число величин. Если бы нам удалось каким-то образом заранее связать движение двух частиц то измерения, выполненные одновременно над обеим частицами, позволили бы экспериментатору проникнуть сквозь завесу квантовой неопределенности, непреодолимую по утверждению Бора,
Использованный Эйнштейном и его коллегами принцип достаточно известен. При игре в бильярд, когда шар, по которому игрок ударяет кием, сталкивается с другим шаром, оба они разлетаются в разные стороны. Но их движения не произвольны, а жестко связаны друг с другом законом действия и противодействия – законом сохранения импульса. Измерив импульс одного шара, можно судить об импульсе другого (который может откатиться далеко в сторону), даже непосредственно не наблюдая за ним– Закон сохранения импульса справедлив и для квантовых частиц. Значит, необходимо лишь, чтобы две квантовые частицы, 1 и 2, столкнувшись между собой, провзаимодействовали и разлетелись на большое расстояние. В этот момент можно измерить импульс частицы 1. Зная его, можно, воспользовавшись законом сохранения импульса, точно вычислить импульс частицы 2, которая, собственно, нас и интересует. Измерение импульса частицы 1, разумеется, внесет неопределенность в ее положение, но это несущественно, так как не влияет на положение частицы 2 (а нас интересует именно она), поскольку та находится далеко; в принципе она могла бы располагаться на расстоянии нескольких световых лет. Если в один и тот же момент непосредственно измерить положение частицы 2, то ее положение и импульс станут известны одновременно. Иначе говоря, мы перехитрим принцип неопределенности!
Рассуждения Эйнштейна–Подольского–Розена основаны на двух допущениях, имеющих принципиальное значение. Во-первых, предполагается, что измерение, проведенное в одном месте, не может мгновенно повлиять на частицу, находящуюся далеко от него. Такое допущение основано на том, что взаимодействие между системами ослабевает с расстоянием. Трудно представить, чтобы два электрона, разделенные расстоянием в несколько метров, а тем более световых лет, каким-то неведомым образом влияли на положение и импульс друг друга. Эйнштейн отвергал подобную мысль, называя ее “призрачным действием на расстоянии”.
Отвергая идею мгновенного дальнодействия, Эйнштейн исходил из своего убеждения, что никакой сигнал или воздействие не могут распространяться быстрее света. Это – ключевой момент теории относительности, и им не следовало пренебрегать. Кроме того, невозможность распространения сигналов со скоростью выше скорости света принципиально важна для общего определения прошлого и будущего во Вселенной. Преодоление светового барьера эквивалентно распространению сигналов назад во времени, а это чревато парадоксами.
Второе фундаментальное допущение, из которого исходил Эйнштейн со своими коллегами, было связано с признанием существования “объективной реальности”. Они предполагали, что такие характеристики, как положение и импульс частицы, существуют объективно, даже если частица удалена и эти характеристики непосредственно не наблюдаемы. Именно в этом Эйнштейн расходился с Бором. По мнению Бора, просто нельзя приписывать частице такие характеристики, как положение или импульс, если нет возможности реально их наблюдать. Измерение, выполненное кем-то еще (“по доверенности”) в счет не идет. Использование частицы-"сообщницы" – просто надувательство.
На этом этапе Эйнштейн и Бор могли признать лишь несовпадение своих позиций. Необходим был такой вариант мысленного эксперимента, который позволил бы проверить, нарушается или нет принцип неопределенности на практике. В 60-х годах Джон Белл из ЦЕРНа придумал, как это сделать. Он использовал два основных допущения Эйнштейна, Подольского и Розена (распространение сигналов со скоростью меньше скорости света и существование объективной реальности) для вывода наиболее общих соотношений между измерениями с частицей 1 и измерениями с частицей 2, причем измерениями не только положения и импульса, но и других характеристик, в частности ориентации спина.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47