https://wodolei.ru/catalog/dushevie_dveri/steklyannye/bez-poddona/
У всякого, кому хоть раз приходилось слышать разговор двух математиков, может создаться впечатление, что они беседуют, пользуясь кодом, и в некотором смысле это действительно так. Как и в любом коде, стоит вам узнать ключ, как сложная информация мгновенно станет простой. В закодированном сообщении нетрудно распознать упорядоченный набор знаков, несущий информацию, хотя истинное содержание сообщения скрыто за внешне бессмысленной грудой цифр. Любая математическая формула – своеобразный код со своим входом и выходом. Взять хотя бы формулу n ^2 , где n – произвольное натуральное число 1, 2, 3, 4, ... Подставляя в нее значения п по порядку, получаем 1, 4, 9, 16, ... В этом случае код не трудно “раскрыть” и по ответам 1, 4, 9, 16, ... вывести формулу n ^2 , восстановив числа “на входе”: 1, 2, 3, 4, .... Но если хотя бы немного усложнить формулу, то расшифровка кода становится непосильной задачей. Попробуйте, например, угадать, по какой формуле построена последовательность 2, 4, 6, 9, 12, 17, 20, 25, 28, 31, 34, ...
Вероятно, величайшим научным открытием всех времен следует считать осознание того, что законы природы можно записать с помощью математического кода. Причина этого нам неизвестна, но сам по себе факт математического кодирования явлений природы позволяет понимать, управлять и предсказывать ход физических процессов. Разгадав код, соответствующий той или иной конкретной физической системе, мы обретаем возможность читать природу как раскрытую книгу.
Люди далеко не сразу поняли, что на фундаментальном уровне законы природы могут быть записаны в математической форме. Древние астрологи вывели простые числовые соотношения, “управляющие” движением Солнца, Луны и других небесных светил, которые помогали предсказывать затмения. Пифагор обнаружил, что высота музыкального тона, создаваемого струной, связана строгой числовой зависимостью с длиной струны. Но первые систематические попытки расшифровать математический код природы были предприняты только в средние века. В XIV в. ученые из Оксфорда установили интересный факт: расстояние, проходимое телом, падающим по вертикали из состояния покоя, пропорционально квадрату времени /2, прошедшего с момента начала падения. Но общее признание этот факт получил только в XVII в. после работ Галилея и Ньютона. Были обнаружены и другие факты, так или иначе связанные с первым: период колебании маятника не зависит от размаха (амплитуды) его качаний, а пропорционален квадратному корню из его длины; тело, брошенное под углом к горизонту, движется по кривой, называемой квадратичной параболой. Кеплер вывел математические соотношения, которым подчиняются движения планет, установив, например, что квадраты периодов обращения планет по орбитам относятся, как кубы их средних расстояний от Солнца.
Кульминацией явилась формулировка Ньютоном законов механики и закона всемирного тяготения. Ньютон обнаружил, что действие гравитации можно описать особенно простой математической формулой – так называемым законом обратных квадратов. Этот закон связывает силу тяготения с расстоянием r от центра сферического тела соотношением 1/r^2. В дальнейшем экспериментальные исследования электрической и магнитной сил показали, что они также подчиняются закону обратных квадратов.
В XVIII–XIX вв. математическая основа физики необычайно расширилась. Для удовлетворения растущих запросов физиков были разработаны новые разделы математики, В нашем столетии “математизация” физики происходила еще быстрее, и ныне ее математический аппарат включает многие разделы чистой математики – неевклидову геометрию, теорию бесконечномерных векторных пространств, теорию групп.
То, что на первый взгляд кажется очень сложным или бессмысленным, при расшифровке “кода” может оказаться проявлением довольно простых математических соотношений. Исследуя природу, физик нередко сталкивается с такими вещами, которые сначала кажутся ему чрезмерно сложными и даже случайными. Но в дальнейшем благодаря использованию надлежащего математического аппарата сложное явление может свестись к поразительно простой математике.
Лучший пример тому – история исследования движений планет Солнечной системы. То, что планеты движутся в небе сравнительно упорядоченно, известно каждому, кто хотя бы мельком интересовался астрономией. Однако при более тщательном изучении выясняется, что движения отдельных планет заметно различаются. Например, Марс, обычно движущийся на фойе неподвижных звезд с востока на запад, иногда поворачивает и некоторое время движется вспять – с запада на восток. Кроме того, внешние планеты движутся гораздо медленнее внутренних. При еще более детальном анализе обнаруживается множество других тонких особенностей.
Некогда пользовалась всеобщим признанием модель мира, созданная Клавдием Птолемеем (II в.), которая основывалась на предположении, что Земля покоится в центре мироздания, а планеты “прикреплены” к жестким концентрическим сферам, вращающимся с различными скоростями. Совершенствование методов наблюдения выявило более точные детали движения, для учета которых к первоначальным сферам птолемеевой системы пришлось добавить дополнительные, меньших размеров, вращающиеся вместе с большими сферами так, чтобы сочетание двух или большего числа вращении воспроизводило наблюдаемые движения планет. К тому времени, когда Коперник открыл (XVI в.) истинное строение Солнечной системы, модель Птолемея стала чрезвычайно запутанной и сложной.
Научная революция, вызванная работами Галилея и Ньютона – классический пример того, как невообразимое нагромождение фактов обретает изящную простоту при использовании более адекватной математической модели. Основное достижение Ньютона состояло в рассмотрении планет как движущихся в пространстве материальных тел, которые подчиняются физическим законам движения и закону всемирного тяготения, открытым самим Ньютоном. Благодаря этому Ньютону удалось описать размеры и форму планетных орбит, а также периоды обращения по ним планет. Результаты расчетов хорошо согласовались с данными наблюдений. А самое главное заключается в том, что и законы движения Ньютона, и его закон всемирного тяготения даже по меркам средней школы математически очень просты. Но в совокупности они дали описание богатого и сложного разнообразия движений.
Приведенный пример иллюстрирует еще одну важную особенность физического мира. Меня часто спрашивают, почему мир так сложен, если законы физики столь просты. Ответ следует из правильного понимания того, что мы считаем физическим законом. Когда физик говорит о законе, он имеет в виду некоторое ограничение на поведение определенного класса систем. Например, простой закон гласит: все брошенные бейсбольные мячи описывают параболические траектории. Этот закон можно проверить, наблюдая полеты большого числа бейсбольных мячей. Но закон не утверждает, что все траектории одинаковы. Если бы все мячи летели по одинаковым траекториям, то бейсбол оказался бы скучной игрой. Одни параболы плоские и стелятся низко, другие – крутые и взмывают высоко. И хотя все эти траектории принадлежат к одному и тому же классу кривых – к параболам, существует бесконечное разнообразие форм параболических кривых, так что есть из чего выбрать.
Что же определяет конкретную параболическую траекторию, по которой летит данный бейсбольный мяч? Именно в выборе траектории и проявляется искусство бейсболиста, так как ее форма зависит от того, с какой скоростью и под каким углом к горизонту брошен мяч. Эти два дополнительных параметра, называемые “начальными условиями”, и следует задать для однозначного выбора траектории.
Физический закон оказался бы бесполезным, если бы был настолько жестким, что допускал единственный вариант поведения. Это был бы не истинный закон, а всего лишь описание мира. Все богатство и сложность явлений реального мира может основываться на простых законах, поскольку существует бесконечное множество начальных условий, создающих разнообразие. Физические законы требуют, чтобы орбиты всех планет Солнечной системы были эллиптическими, но точная их форма и отношение длин большой и малой полуосей каждого эллипса из этих законов не следуют. Они определяются начальными условиями, которые нам неизвестны, так как зависят в первую очередь от условий формирования Солнечной системы. Те же законы описывают гиперболические траектории комет и даже сложные траектории космических кораблей. Таким образом, открытые Ньютоном простые математические законы служат основой поистине множества сложных явлений.
Красота как путеводная нить к истине
Красота – понятие туманное, однако нет сомнений в том, что именно она служит источником вдохновения ученых. В некоторых случаях, когда дальнейший путь не ясен, именно математическая красота и изящество ведут ученых к истине. Физик интуитивно чувствует, что природа предпочитает красивые “решения” некрасивым. До сих пор это убеждение, несмотря на его субъективизм, служило надежным и могущественным спутником физиков. Однажды в беседе с Эйнштейном Гейзенберг заметил:
Если природа приводит нас к математическим выражениям необычайно простым и красивым... которые ранее не встречались, то мы невольно воспринимали их как “истинные” и считаем, что они открывают то или иное свойство природы.
Затем Гейзенберг пустился в рассуждения о “почти пугающей простоте и цельности соотношений, которые природа внезапно открывает перед нами”, – эта тема волновала многих его современников. Поль Дирак, пойдя еще дальше, провозгласил: “Красота уравнений важнее, чем их согласие с экспериментом”. Дирак имел в виду, что игра творческого воображения может привести к созданию теории, столь привлекательной, что физики отринут всякие сомнения в ее истинности, прежде чем теория будет подвергнута экспериментальной проверке, и не отвергнут ее даже столкнувшись с казалось бы, противоречащими ей экспериментальными данными.
Ту же мысль проводит и популяризатор науки Ричард Моррис в своей замечательной книге “Разоблачение Вселенной”:
Между наукой и искусством существует множество параллелей, которые сразу же бросаются в глаза. Подобно художникам, каждый ученый имеет свой неповторимый стиль. Представления ученых о том, какой должна быть хорошая научная теория, удивительно схожи с аналогичными воззрениями представителей искусства... Корректней считается та теория, которая предположительно допускает экспериментальную проверку. Тем не менее в некоторых случаях научная интуиция способна предугадать правильность теории еще до проведения ее экспериментальной проверки. Эйнштейн (как и многие другие физики) верил в истинность специальной теории относительности, даже когда, эксперименты, казалось бы, противоречили ей.
Моррис рассказывает, как Эйнштейн реагировал на известие о том, что решающее предсказание его общей теории относительности получило подтверждение при астрономических наблюдениях. Эйнштейн отнесся к сообщению совершенно безучастно, и когда его спросили, как бы он отреагировал, если бы результаты противоречили его теории, ответил: “Мне было бы жалко Господа Бога, ведь теория-то правильная”.
Объяснить людям, далеким от математики, что такое математическое изящество, трудно, но я все-таки попытаюсь. Взгляните на кривую, изображенную на рис. 6. Хотя она гладкая и не имеет никаких особенностей, кривую отнюдь не сразу поставишь в соответствие чему-либо, известному из повседневной жизни. Если бы вас попросили запомнить кривую и при случае точно воспроизвести ее, задача оказалась бы безнадежной. Вы легко могли бы воспроизвести, скажем, окружность или какую-нибудь белее сложную, но легко узнаваемую кривую, например эллипс (который представляет собой не что иное, как окружность, рассматриваемую под некоторым углом); однако кривая на рис. 6 обладает более сложной структурой, чем окружность: и наклон касательной к ней, и кривизна кривой изменяются вдоль нее по определенному закону, который тем не менее трудно установить точно.
Рис.6. Экспонента. Форма этой кривой отражает важные математические особенности, характерные для широкого круга физических явлений. Представленная в виде графика экспонента может, например, описывать неограниченный рост народонаселения.
Что же касается математика, то он без труда опознает эту кривую, и ему известно, как "за кодировать" все ее свойства, чтобы легко вспомнить их и воспроизвести с любой степенью точности, если это понадобится. В действительности эта кривая представляет график так называемой экспоненциальной функции, или экспоненты, которая математически записывается как е^x и часто встречается в самых различных задачах. Математику хорошо известно, что эту функцию можно вывести из формулы (1 + х/n)^n в пределе, когда п становится бесконечно большим, и поэтому, вооружившись микрокалькулятором, он может вычислить координаты каждой точки на графике с любой требуемой точностью.
“Экспоненциальная функция – одно из самых изящных соотношений, известных человеку”, – утверждает математик. Почему?
Предположим, что нас интересует наклон кривой в каждой ее точке. Сначала кривая идет очень полого, а по мере продвижения слева направо становится все круче. Построим график, но не самой экспоненциальной функции, а угла наклона касательной к ней. Как он выглядит? Оказывается, совпадает с графиком самой экспоненциальной функции. Экспонента – это такая функция, значение которой в любой точке совпадает с углом наклона касательной к ней в этой точке (или по крайней мере пропорционально ему). Именно поэтому экспоненциальная функция играет столь важную роль при описании простых форм роста, например, неограниченного размножения популяции, градиент (мера скорости роста) которой пропорционален численности самой популяции.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47