душевые уголки цезарис 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Столь же внезапно возникают и известные нам частицы – электроны, нейтрино, фотоны и кварки, которые теперь вполне различимы. Калибровочная симметрия нарушена, а электромагнитное взаимодействие отделилось от слабого.
Если проследить за дальнейшей эволюцией космического вещества, то мы станем свидетелями еще одного фазового перехода, который произойдет спустя 1 мс (миллисекунда) после Большого взрыва. Плотный конгломерат быстро движущихся кварков внезапно конденсируется, образуя адроны с вполне определенными свойствами. В этом море частиц можно различить отдельные протоны, нейтроны, мезоны и другие сильно взаимодействующие частицы, в которых кварки объединены в четкие группы – попарно или по три. По мере дальнейшего падения температуры все оставшиеся античастицы (например, позитроны) аннигилируют, создавая интенсивное гамма-излучение. В результате вещество превращается в знакомую нам смесь протонов, нейтронов, электронов, нейтрино и фотонов, и открывается прямой путь для синтеза гелия, который начинается спустя несколько секунд после Большого взрыва.
Попытка изучить эволюцию Вселенной начиная с 10^-12 с привела нас к новому замечательному представлению о природе вещества. Мы убедились, что протоны и нейтроны – эти «кирпичики» мироздания – существовали не всегда, а «выморозились» из кваркового бульона спустя примерно 10^-3 с после Большого взрыва. Поэтому эти ядерные частицы (нуклоны) можно считать реликтами первой миллисекунды существования Вселенной. Еще более удивителен тот факт, что лептоны и кварки, лежащие в основе всего вещества Вселенной, обрели свою индивидуальность лишь спустя примерно 10^-12 с; таким образом, они являются реликтами первой пикосекунды.
Постепенно начинает вырисовываться систематическая картина эволюции Вселенной. Происхождение элементов можно проследить до отдаленных эпох возникновения звезд и нуклеосинтеза в первые минуты существования Вселенной. Протоны и нейтроны, служащие материалом для создания ядер, образовались еще раньше, тогда как лептоны и кварки, лежащие в основе ядерных частиц, являются реликтами первой триллионной доли (10^-12 ) секунды существования Вселенной. Однако остается главная загадка, которая возвращает нас к значительно более ранней эпохе – эпохе Великого объединения.

Происхождение вещества

Первоначальный вариант теории Большого взрыва не давал убедительного объяснения того, каким образом в ходе первичного взрыва возникло вещество. Космологам не оставалось ничего другого, как предположить, что все вещество, из которого построена Вселенная, существовало с самого начала. Ни один из известных физических процессов не мог объяснить возникновение вещества. В настоящее время новая космология дает очень правдоподобное объяснение происхождению вещества, основанное на действии суперсилы.
О возможности возникновения вещества в результате концентрации энергии известно в течение нескольких десятков лет. При Большом взрыве не было недостатка в энергии, необходимой для образования вещества видимой части Вселенной, общая масса которого оценивается в 10^50 т. Загадка заключается в том, как все это вещество могло возникнуть без равного количества антивещества (мы уже упоминали об этой проблеме в гл.2). В лабораторных условиях возникновение вещества всегда сопровождается рождением антивещества, и симметрия между ними, по-видимому, заложена в законах физики. Неизбежен вопрос: куда же девалось все антивещество?
Прежде всего следует убедиться в том, что Вселенная действительно построена только из вещества. Например, камень из антивещества во всех отношениях был бы сходен с камнем из вещества, и посмотрев на них, мы не отличили бы их друг от друга. Тем не менее существует безошибочный способ установить, что есть что. Если привести каждый из камней в соприкосновение с куском вещества, то камень из антивещества исчезнет, произведя взрыв, по мощности сравнимый с ядерным. Даже тоненькая струйка газа антивещества вызвала бы бурную реакцию – интенсивное гамма-излучение. Мы, несомненно, можем быть уверены, что Земля на 100% состоит из вещества.
Но присуща ли такая асимметрия Вселенной в целом? Насколько мы можем судить – да. Если бы наша Галактика содержала антивещество в сколько-нибудь значительном количестве, то при неизбежных столкновениях между газом, пылью, звездами, планетами и другими объектами вещество, встречаясь с антивеществом, аннигилировало бы, в результате чего возникали бы мощные потоки гамма-излучения. Столь высокий уровень гамма-излучения, безусловно, был бы зарегистрирован; пока же, по имеющимся у астрономов данным, содержание антивещества в нашей Галактике не превышает тысячной доли. Если исключить единичные антипротоны, обнаруженные в космических лучах, то в целом Галактика, по-видимому, состоит только из вещества.
Можно предположить, что некоторые галактики, напротив, состоят только из антивещества (с очень небольшой добавкой вещества). Однако время от времени даже галактики сталкиваются друг с другом, причем в прошлом они находились значительно ближе друг к другу. Гамма-излучение, возникшее в результате таких столкновений, наблюдалось бы и сегодня. Более того, если рассматривать Вселенную как целое, то трудно понять, каким образом первоначальная смесь вещества и антивещества могла когда-то разделиться и попасть в удаленные друг от друга области пространства. Основываясь на этих наблюдениях, большинство космологов считают, что Вселенная построена в основном из вещества, и эта асимметрия была заложена в самые ранние этапы эволюции Вселенной.
Еще десять лет назад предлагалось единственное объяснение первичного нарушения баланса между веществом и антивеществом – считалось, что асимметрия присуща Вселенной с самого начала, т.е. уже в процессе Большого взрыва возникла диспропорция между веществом и антивеществом. Подобное объяснение, основанное на искусственно подобранных начальных условиях, разумеется, не может быть удовлетворительным, ибо оно ведет по замкнутому логическому кругу. Такие «объяснения» нельзя считать научными. С их помощью можно описать любое начальное соотношение вещества и антивещества. Они ничего не говорят о том, почему наблюдаемая асимметрия столь мала или столь велика. По-видимому, не существует веских причин, по которым, например, количество вещества не могло бы оказаться в два, а возможно, и в миллион раз больше.

ТВО приходит на помощь

Более естественно предполагать изначально полную симметрию между веществом и антивеществом, нежели считать, что преобладание вещества во Вселенной «от бога», и лишь затем в силу тех или иных причин оно обозначилось и закрепилось. В этом случае уже нет необходимости доверять произвольно выбранным начальным условиям; состояние, в котором существует точное равенство количеств вещества и антивещества, единственно. Наблюдаемое преобладание вещества над антивеществом можно было бы количественно объяснить на основе физической теории.
Для осуществления этой идеи, очевидно, необходимо придумать физический механизм, который нарушал бы симметрию между веществом и антивеществом, считавшуюся по традиции одним из нерушимых законов физики. В конце 70-х годов физики нашли такой механизм нарушения симметрии в виде теорий Великого объединения (ТВО). Как отмечалось в предыдущих главах, одним из самых сенсационных предсказаний ТВО явилось предсказание распада протона с образованием позитрона. Связь между распадом протона и асимметрией вещества и антивещества можно усмотреть в возможной судьбе атома водорода (состоящего из протона и электрона) в отдаленном будущем. При распаде протона образуются пион и позитрон. Пион распадается на два фотона, а позитрон аннигилирует с электроном, создавая еще два фотона. Итак, атом вещества прекращает свое существование, превращаясь целиком в излучение. В результате этого процесса вещество, не взаимодействуя с антивеществом, полностью переходит в энергию излучения. Вспомним теперь, что каждый физический процесс обратим; в данном случае это означает прямое превращение энергии излучения в вещество, не сопровождающееся образованием антивещества. Именно такой процесс, значительно ускоренный, мог бы объяснить возникновение вещества.
Чтобы детально смоделировать процесс рождения Вселенной, необходимо вернуться к так называемой эре ТВО, т.е. сместиться во времени еще на двадцать порядков относительно эры электрослабого взаимодействия, о которой мы говорили в предыдущем разделе. Это означает попытку описать Вселенную в возрасте всего лишь 10^-32 с! В этот момент космос был бы заполнен «супом» из странных, неведомых нам частиц, в том числе чрезвычайно массивных; плотность «супа» составляла по оценкам около 10^73 кг/м^3, а температура – около 10^28 К. Вселенная в тот момент была еще столь юной, что свет не успел пройти путь, равный миллиардной доле поперечника протона.
Важнейшими составляющими экзотического супа были, вероятно, сверхмассивные частицы – переносчики взаимодействия в ТВО, так называемые Х-частицы, о которых упоминалось в гл.8. Именно эти частицы привели к асимметрии в соотношении вещества и антивещества. Дело в том, что при распаде Х-частицы образуется много дочерних частиц, которые, например, на 2/3 представляют собой вещество, и лишь на 1/3 – антивещество. Точное значение такой асимметрии зависит от принятой формы ТВО. Но в любом случае распад Х-частицы ведет к преобладанию вещества над антивеществом.
Следует, однако, учитывать еще одно обстоятельство. Первичный «суп» содержит наряду с Х-частицами и их античастицы, обозначаемые обычно X' . Напомним, что мы предполагаем исходную симметрию Вселенной, а это означает, естественно, равенство чисел Х– и X' -частиц. Но тогда при распаде Х асимметрия должна быть обратной, т.е. 2/3 должно составлять антивещество, и лишь 1/3 – вещество.
Для выхода из этого тупика теоретики предположили, что должно существовать фундаментальное различие скоростей распада Х– и X' -частиц. В таком случае распады Х не полностью компенсируют распады X', причем различие в пользу Х составит, повидимому, не более одной стомиллионной доли, что приведет к соответствующему преобладанию вещества над антивеществом.
Насколько разумно подобное предположение? Физики бывают проницательными историками, особенно когда дело касается предмета их исследований. Они никогда не забывают уроков истории, если вопрос идет о создании новых теорий. Один из таких уроков был преподнесен в 1956 г. Два американских физика китайского происхождения Т. Д. Ли и Ч. Н. Янг произвели переворот в существовавших представлениях, заявив, что слабые взаимодействия нарушают считавшееся «неприкосновенным» свойство природы, известное как зеркальная симметрия. До этого момента физики полагали, что силы природы не различают «правого» и «левого». Разумеется, в природе существует много объектов с «врожденной» спиральностью; наиболее известный пример – молекула ДНК. Эта молекула по форме сходна с винтовой лестницей, закрученной вправо. И хотя в природе нет левовинтовых молекул ДНК, ни один из фундаментальных законов физики не запрещает их существования. Тот факт, что жизнь на Земле построена на основе правовинтовых молекул ДНК, скорее всего говорит о том, что первые способные к самовоспроизводству молекулы оказались именно такой формы. Это хороший пример спонтанного нарушения симметрии: реальная структура асимметрична, тогда как лежащие в ее основе физические взаимодействия симметричны.
Когда физик утверждает, что существующие в природе взаимодействия зеркально симметричны, он подразумевает, что вызванные этими взаимодействиями фундаментальные процессы в зеркале выглядят столь же реально, как и при непосредственном наблюдении. Представим, например, что мы запечатлели на кинопленку распад частицы, а затем зарядили в проектор перевернутую пленку. Если вызывающие распад взаимодействия обладают свойством зеркальной симметрии, то ни один физик не заметит подвоха.
Долгое время предполагалось, что субатомные частицы не отличают «правого» от «левого», и это даже не считали нужным проверять на опыте. Но вот явились Ли и Янг со своим предположением, а американка китайского происхождения мисс Ч. С. By вскоре поставила нужный эксперимент, и тогда ко всеобщему изумлению выяснилось, что Ли и Янг были правы. Слабое взаимодействие действительно нарушает зеркальную симметрию. Опыт By, в котором отдельно измерялось число электронов, испускаемых влево и вправо точно ориентированными ядрами радиоактивного кобальта, ознаменовал поворотный пункт в физике. После этого опыта ни одной из симметрий уже не гарантировалась неприкосновенность!
В 1964 г. последовало новое потрясение. Большой интерес вызывало загадочное поведение особой частицы, называемой нейтральным К-мезоном, или каоном. Представление о нарушении зеркальной симметрии к этому времени стало общепризнанным, однако считалось, что античастицы нарушают зеркальную симметрию в противоположном смысле по сравнению с частицами. (Как правило, античастицы проявляют свойства, противоположные свойствам частиц.) Если бы это было всегда справедливо, то в процессе Большого взрыва во Вселенной не могло бы возникнуть преобладание вещества над антивеществом. Действительно, для любого процесса рождения частицы существовал бы зеркальный процесс, в котором рождалась античастица. Особенности нейтрального К-мезона, представляющего собой некий гибрид частицы и античастицы, дали возможность проверить справедливость этих представлений.
Решающий эксперимент провели В. Л. Фитч и Дж. У. Кронин в Брукхейвенской национальной лаборатории (США). Они установили, что частицы и античастицы нарушают зеркальную симметрию не противоположно друг другу и не в равной степени – по крайней мере для нейтральных К-мезонов. Здесь также наблюдалось совсем небольшое, но исключительно важное нарушение симметрии, отражающее фундаментальный разбаланс сил природы, ответственных за некоторые распады частиц;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


А-П

П-Я