https://wodolei.ru/catalog/mebel/shkaf/dlya-stiralnoj-mashiny/ 

 

– Где десять однозначных фишек, там и десять однозначных чисел.
И тут под столом громко затявкал Пуся.
– Что это с ним? – забеспокоился Главный терятель. – По-моему, он кашляет.
– А по-моему, смеётся, – возразил я. – Наверное, заметил, что вы опять ошиблись. К вашему сведению: нуль к натуральным числам не относится. А потому однозначных натуральных чисел девять.
– Я же говорила, что Пуся – необыкновенная собака, – сказала девочка с гордостью. – Это она привела нас к истине.
– На то она и Главная ищейка! – заключил я и предложил записать наше первое достижение на бумажных салфетках.
Следующий вопрос, естественно, касался двузначных чисел, и Пусе пришлось опять хохотать, потому что Главный терятель повторил свою первую ошибку. Он рассуждал так: самое большое двузначное число – 99. Но в него входят 9 однозначных. Значит, всего двузначных 90. К сожалению, он не учёл, что среди этих девяноста имеется девять чисел с одинаковыми цифрами: 11, 22, 33, 44, 55, 66, 77, 88, 99. А по условию, цифры в числе могут быть только разные. И стало быть, двузначных натуральных чисел только восемьдесят одно.
Главного терятеля это озадачило.
– Позвольте, позвольте, – запальчиво сказал он, – когда я приобщил к натуральным числам нуль, мне заявили, что он к таковым не относится. Но ведь и среди двузначных натуральных есть девять чисел с нулём: 10, 20, 30, 40, 50, 60, 70, 80, 90. Выходит, их тоже надо вычесть.
Я думал, что теперь хохотать будет не только Пуся, но и девочка. Но, против ожидания, она жалостливо вздохнула.
– Бедный! – сказала она, сочувственно глядя на Главного терятеля. – Неужели вы забыли, какая разница между числами и цифрами? Когда речь шла об однозначных числах, вы имели в виду нуль как число. Теперь мы перешли к двузначным, и в этом случае нуль уже не число, а цифра, означающая, что в разряде пусто…
Нет, до чего милая девочка! Недаром я к ней привязался. Не только весёлая, не только смышлёная, но и добрая. А доброта – великая сила. За примером недалеко ходить. Дружеское сочувствие подействовало на Главного терятеля самым благотворным образом, и он совершенно неожиданно для нас. а также для себя самого выдал весьма дельное замечании.
– Смотрите-ка, – сказал он, – натуральных двузначных чисел – восемьдесят одно. Но что такое 81? Это же 9, умноженное на 9…
– Очень кстати замечено, – похвалил я.
– Почему кстати? – поинтересовалась девочка.
– Сейчас поймёшь. Ведь мы как раз переходим к трёхзначным числам… А это вам не двузначные.
– Уж конечно, – поддакнул Главный терятель. – Во-нервых, их гораздо больше.
А во-вторых? – поинтересовался я. – Не знаете? Во-вторых, среди двузначных чисел попадаются такие, что состоят из двух одинаковых цифр. А среди трёхзначных сверх того есть ещё и такие, что состоят из трёх одинаковых. В числе 552 – две одинаковые цифры, а в числе 555 – три. Так что…
– Так что считать нам не пересчитать, – подхватила девочка.
– Но угадала, засмеялся я. – Так что необходимо найти правило, которое поможет нам и не считать и не пересчитывать. И для этого вернёмся немного обратно. Сколько у нас однозначных чисел? Девять. Теперь подумаем, как из количества однозначных чисел получить количество двузначных? Очевидно, для этого придётся к каждому однозначному числу последовательно приставлять по одной из оставшихся фишек. Начнём с единицы. Сперва приставим к ней 0…
– Затем – единицу, – подсказал Главный терятель.
При этих словах Пуся опять засмеялся, а девочка сказала, что единицы у нас уже нет: ведь к ней-то мы и приставляем оставшиеся фишки и получаем при этом вот что: 10, 12, 13, 14, 15. 16, 17, 18, 19.
– Вот вам и все двузначные числа, начинающиеся с единицы, – подытожил я. – Нетрудно заметить, что их девять. Далее то же проделываем с однозначным числом 2 и получаем ещё девять двузначных чисел: 20, 21, 23, 24, 25, 26, 27, 28, 29…
– Как интересно! – загорелась девочка. – Теперь то же самое проделаем с числом 3, потом с числом 4…
– Но зачем? – возразил я, – Ведь мы уже заметили, что из каждого однозначного числа получается девять двузначных. И так как всего однозначных чисел 9, нам остаётся лишь помножить 9 на 9. Вот почему так кстати оказалось замечание нашего дорогого Главного терятеля. Ведь именно он подметил, что 81 – это 9, умноженное на 9…
Главный терятель вспыхнул от удовольствия и немедленно сделал ещё один шаг по пути прогресса. Он вдруг понял, как тем же способом узнать число трёхзначных чисел. Для этого, по его мнению, число двузначных следует помножить на восемь. Почему? Да потому, что на каждое двузначное число из десяти фишек пошло две. Стало быть, свободными остались восемь. Таким образом, число трёхзначных можно представить так: 9x9x8.
Мы уже хотели двинуться дальше, но тут девочка вспомнила о своих секретарских обязанностях и пожелала занести наши достижения в блокнот. Для удобства она записала их столбиком:
Однозначные – 9
Двузначные – 9 X 9
Трёхзначные – 9 X 9 X 8
После этого она вдруг задумалась, потом вскочила, завертелась на одной ножке и завопила на весь павильон:
– Ура! Задача решена! Сейчас нам дадут чаю!
– Спокойно, спокойно, – уговаривал я, – ты же ещё ничего не объяснила…
Но она возразила, что тут и объяснять нечего. И так ясно, что чем больше значность, тем меньше число оставшихся фишек. Когда мы перейдём к вычислению четырёхзначных, их уже будет 7, пятизначных – 6, шестизначных – 5 и так далее, и так далее. И потому записать это следует так:
Однозначные – 9
Двузначные – 9x9
Трёхзначные – 9X9X8
Четырёхзначные – 9x9x8x7
Пятизначные – 9x9x8x7X6
Шестизначные – 9x9x8x7x6X5
Семизначные – 9x9x8x7x6x5x4
Восьмизначные – 9x9x8x7x6x5X4x3
Девятизначные – 9x9X8x7x6x5X4x3x2
Десятизначные – 9x9x8x7x6x5x4x3x2x1
– Восхитительно! Совершенно восхитительно! – повторял Главный терятель, любуясь девочкиной таблицей, очень, надо сказать, аккуратной. – Но самое интересное вот что: количество девятизначных и десятизначных чисел совершенно одинаково. Ведь последняя строчка отличается от предпоследней только одним множителем – единицей. А все знают, что от умножения на единицу произведение не меняется.
– Делаете успехи! – заметил я.
– Сам себе удивляюсь, – улыбнулся Главный терятель и вдруг застыл с выпученными глазами. – Какой же я болван! У меня уже с полчаса вертится в голове ассоциация, а я всё забываю о ней сказать.
– Так выкладывайте её скорей, пока опять не забыли! – торопила девочка, снова хватаясь за свой блокнот.
– Пожалуйста, – сказал Главный терятель и действительно выложил все свои фишки по порядку номеров. – Взгляните: перед вами десять последовательных цифр. Все они разные.
– Ну и что? – не понял я.
– А то, что в утерянном номере все цифры тоже были разные.
– Ассоциация! Первая ассоциация! – торжественно изрекла девочка. – Заношу в протокол: в номере все цифры разные. А теперь – пусть нам дадут чаю!
Она была права. Задачу мы решили, притом совершенно правильно. Нам оставалось два дела: произвести арифметический подсчёт и получить заслуженную награду. Первое можно было не делать: это любому школьнику по плечу. Второе мы сделали с превеликим удовольствием, потому что чай оказался на славу. А уж фишки… Такого необыкновенного печенья я ещё не пробовал. Честно говоря, я даже пожалел, что вместо десяти штук мне до сталось всего семь с половиной. Почему? Очень просто. Войдя в павильон, все мы получили по целлофановому пакетику с фишками. Все, кроме Пуси. Очевидно, здешнему персоналу не пришло в голову, что щенок тоже может участвовать в числовой игре. А он между тем играл наравне со всеми и всякий раз честно тявкал, заслышав очередную нелепицу Главного терятеля. Могли мы оставить его без сладкого? Конечно, нет! И каждый из нас троих отдал ему четверть своих фишек и своего чая.
Но, поразмыслив, мы решили, что Пуся заслуживает даже бо?льшего. Ведь он с самого начала взял след и привёл нас именно туда, где у Главного терятеля появилась первая ассоциация, а у меня – первая примета утерянного номера! Да, права была девочка: Пуся – необыкновенный пёс. Имя его следовало увековечить, и после недолгого совещания розыск утерянного билета стал называться операцией «Пуся».
В ГОРОДКЕ ЮНЫХ ПЕНСИОНЕРОВ
На сей раз Пуся уже не бежал, а шествовал – чинно, важно, преисполненный собственного достоинства. Слава обрушилась на него слишком рано и слегка затуманила его юную голову, а это, как известно, добра не сулит. Ни собакам, ни людям.
К счастью, зазнался он не настолько, чтобы утратить своё незаурядное сыскное чутьё. Но мы это поняли позже, а сперва очень удивились, оказавшись перед воротами, над которыми радугой изогнулась ажурная чугунная надпись: «Городок юных пенсионеров».
Есть от чего прийти в недоумение, подумаете вы. Пенсионеры – и вдруг юные. Но нас не то удивило. Все мы давно уже привыкли, что люди в Энэмске не стареют и на пенсию выходят лишь потому, что так принято. К тому же ничто не мешает им по-прежнему заниматься своим делом, а если захочется, попробовать силы в ином. Так что не поняли мы другого: почему Пуся привёл нас именно сюда? А не в зоопарк? Или в цирк? Или куда-нибудь ещё? Я уже говорил, выяснилось это позже. А сначала мы просто вошли в городок и последовали за Пусей, полагаясь на его вкус и нюх.
Жалеть нам об этом не пришлось. Вкус у нашей ищейки отличный (недаром она из Энэмска!), а нюх – и того лучше. Особенно на съестное. По её милости мы перебывали чуть не во всех встречных пирожковых и пельменных и самолично убедились, что юные пенсионеры работают с огоньком. Пирожки дымились, а пельмени оказались такими горячими и перчеными, что на нежном Пусином язычке вскочил здоровенный волдырь. К счастью, Пуся хоть и щенок, но заживает на нём всё, как на собаке. И волдырь тут же исчез.
Кроме пирожковых и пельменных, мы ещё побывали в собачьей парикмахерской. Здесь Пусю подстригли, вымыли душистым шампунем, расчесали до атласного блеска его и без того шелковистую шёрстку и сделали таким красавцем, что хоть картину с него пиши! И картину, действительно, написали. Не успели мы выйти из парикмахерской, как нам повстречался художник, тоже из юных пенсионеров. Увидав Пусю, он моментально раскрыл свой этюдник и увековечил знаменитую ищейку заодно с его симпатичной хозяйкой, да ещё в двух экземплярах: один подарил нам, другой оставил себе, чтобы обнародовать на ближайшей выставке.
Пусе это на пользу не пошло. В поведении у него появилось что-то барское, равнодушное, лениво-небрежное. И я вдруг подумал, что он стал до смешного похож на одного моего знакомого мальчика – того самого, что недавно снимался в кино. До съёмки это был мальчик как мальчик – вежливый, скромный, прилежный. Теперь его не затащишь в школу и не оттащишь от зеркала. Таковы пагубные последствия ранней известности, и Пусе, похоже, было бы не миновать той же участи, если бы не встреча с котёнком…
Надо вам знать, в Городке юных пенсионеров есть специальные прогулочные аллеи. Отличаются они от всех прочих только тем, что скамейки там расположены на расстоянии десяти метров друг от друга и все пронумерованы. Так вот, только мы очутились в самом начале такой аллеи, как на другом её конце появился пушистый, притом совершенно белый котёнок. Зрелище получилось забавное: на одном конце угольно-чёрный щенок, на другом – белоснежная киска. Но любовались мы им недолго. Этому помешала вековая кошачье-собачья вражда.
Завидев друг друга, противники настороженно замерли, шерсть на них встала дыбом, и спустя мгновение они уже мчались друг другу навстречу, издавая боевые кличи и не обращая внимания на вопли своих перепуганных хозяек.
Забыл сказать, что у котёнка тоже была хозяйка – миловидная юная пенсионерка в узеньких джинсах и розовой кофточке. Не в силах двинуться с места, она зажмурилась от ужаса и потому не видела, что, пробежав с четверть пути, котёнок внезапно струхнул и повернул обратно. Пуся между тем продолжал мчаться вперёд и настиг котёнка в тот миг, когда он очутился в конце аллеи, у ног своей владелицы. Но вместо того чтобы налететь на него, щенок вдруг остановился и стал рассматривать своего не?друга со скрытым, а там и с явным сочувствием. Котёнок выглядел таким слабым, таким беззащитным, а слабость, как и доброта, великая сила! И Пуся прекратил военные действия.
Впоследствии Главный терятель не раз говорил, что Пуся поступил по-джентэнэмски. Вероятно, он хотел сказать «по-джентльменски», но я охотно прощаю ему эту оговорку, потому что в Энэмске все – джентльмены. Не только собаки, но и люди.
Примечательно, что после истории с котёнком Пуся перестал важничать. Поддавшись благородному порыву, он уже не мог вернуться на путь зазнайства и тщеславия и заметно поумнел. Настолько, что рискнул предложить нам задачу.
Ему таки пришлось поработать, чтобы его наконец поняли. Не однажды перебегал он от скамейки к скамейке и всякий раз многозначительно останавливался у той, где маленькие кошачьи следы поворачивали обратно. Скамейка эта числилась под номером 10 и была, стало быть, четвёртой с конца. Потому что всего скамеек в аллее было тринадцать, а мы, если помните, находились в самом её начале. И так как расстояние между скамейками – десять метров, нетрудно определить, что длина аллеи…
Впрочем, тут у нас возникли разногласия. Главный терятель полагал, что длина аллеи – 130 метров, мы же с девочкой стояли на том, что всего 120. Почему? Да потому что между тринадцатью скамейками всего двенадцать пролётов. В конце концов Главный терятель с этим согласился. Куда труднее оказалось втолковать ему, чего хочет Пуся. А хотел он, в общем, немногого: чтобы все узнали, во сколько раз быстрее котёнка он бежал во время их встречи.
В общем, задачка пустяковая. Особенно для человека, возглавляющего Стол находок утерянных чисел. Но Пуся на меня и не рассчитывал. Его задача предназначалась девочке, и она мигом определила, что, повернув у четвёртой с конца скамейки, котёнок преодолел три пролёта, стало быть, сперва проделал 1/4 пути (12: 3 = 4), а потом снова 1/4пути, но уже в обратном направлении. Всего, стало быть, половину.
1 2 3 4 5 6 7 8 9 10 11 12


А-П

П-Я