Обращался в магазин Водолей 

 

Глаза его засветились нежностью, он осторожно прошёлся по струнам, подкрутил колки и запел приятным тенорком:
Всю жизнь над числами корплю,
Но без благих последствий.
Я их без памяти люблю,
И в том причина бедствий.
Увы, увы,
Лишь в том причина бедствий.
Возьмусь задачку я решать.
Тружусь, а толку мало:
Конца ещё и не видать,
А я забыл начало!
Беда, беда,
Уже забыл начало!
Зайти по делу как-то раз
Мне в пять часов велели.
Явился и в условный час,
Но… через две недели.
Кошмар! Кошмар!
Лишь через две недели!
Микстуру – память укреплять –
Дал доктор мне недавно,
Но забываю принимать
Лекарства я исправно.
И смех, и грех!
Не пью лекарств исправно…
И всё же чем-то мне мила
Беспамятность такая,
Затем, что ни обид, ни зла
Я не запоминаю.
Да-да, да-да,
Обид не вспоминаю.
Но свято помню об одном –
Что непременно нужно
За доброту платить добром,
За дружбу – верной дружбой.
Всегда, всегда
Платить за дружбу дружбой!
– Очень, очень мило, – сказал я, когда замер последний аккорд, – но так мы никогда не доберёмся до сути…
– Сейчас! Сейчас всё будет в полном порядке! – засуетился Главный терятель. – Видите ли, недавно в соседнем книжном магазине объявили лотерею, и в списке выигрышей я обнаружил книгу, о которой мечтаю с самого детства…
– Вот здорово! – оживилась девочка. – И что же это за книга?
– В самом деле, что же это за книга? – растерянно пробормотал Главный терятель. – А, вспомнил! Она называется «Развлечения корней из целых чисел».
– Смешно! – удивилась девочка. – Вы хотели сказать, извлечения корней…
– Ни в коем случае! – запротестовал тот. – Извлекаются корни долго и скучно, зато развлекаются быстро и весело. Вот, например, чтобы извлечь корень квадратный из числа 81, надо-таки подумать. Другое дело развлечение при извлечении. Для этого достаточно сложить цифры подкоренного числа 81. Не верите? Так запишите и проверьте: 8+1 = 9. А 9 – это и есть корень квадратный из восьмидесяти одного.
– Гм… Что-то тут не так, – усомнилась девочка.
– Конечно, не так, – засмеялся он. – Но ответ-то правильный! Или ещё: надо извлечь корень кубический из числа 512. Снова складываем цифры подкоренного числа: 5+1+2. Что получаем? 8. Но ведь это же и есть корень кубический из пятисот двенадцати!
– Забавный фокус, – сказал я, невольно втягиваясь в игру. – Но вот корень квадратный из числа 121 таким способом уже не извлечёшь. 1+2+1 это 4, а корень квадратный из 121 равен одиннадцати.
– Не спорю, – засмеялся он, – но… зачем же вечно показывать один и тот же фокус? Можно и другой. Первые две цифры числа 121 образуют число 12. Вычтем из двенадцати третью цифру – 1 и получим…
– Одиннадцать! – выпалила девочка в полном восторге. – Смешно, смешно, смешно!
– Не то слово, – возразил Главный терятель. – Восхитительно! Не зря я мечтаю об этой книге, не зря приобрёл билет лотереи…
Я осторожно поинтересовался, почему он думает, что выиграет именно эту книгу? Но, по его словам, иначе и быть не может. Уж раз он что задумал, так оно непременно сбудется…
– В том случае, если мы восстановим номер билета, – напомнил я, – но этого никогда не случится, пока вы наконец не расскажете, при каких обстоятельствах билет потеряли…
– При самых таинственных, – отвечал он, заговорщицки понизив голос. – Сперва он был, а потом его не стало.
– И это всё? – изумился я.
– Всё. Впрочем, нет. Не следует забывать, что пропал ещё и номер. И это несмотря на то, что я изучал его целых два дня.
Последнее замечание настроило меня на лирический лад. Дело в том, что я постоянно мудрю с числами. Изучаю номера телефонов, встречных машин, сберкасс и произвожу с ними всевозможные манипуляции. Перемножаю цифры, складываю и всегда подмечаю забавные закономерности. Похоже, Главный терятель был тоже не чужд этому увлечению, и мы с ним добрых полчаса проболтали о своих находках. Пртом мне пришло в голову, что человек, два дня изучавший номер билета, должен бы запомнить хоть какие-то его приметы, но надежда моя тотчас лопнула. Если Главный терятель и запомнил, так только то, что номер был записан цифрами.
Я уж собирался объявить дело безнадёжным, но вовремя сообразил, что забытое число можно восстановить с помощью ассоциаций. Этот надёжный приём не раз выручал меня как раз в таких затруднительных случаях.
Разумеется, речь не об ассоциации футболистов или шахматистов. Я имею в виду чудесное свойство нашего ума. Допустим, вы должны были купить молока и… забыли. Но тут начинает мяукать ваш голодный котёнок, и вы сразу вспоминаете про молоко. По ассоциации.
Да, ассоциации – это прекрасно! Подобно Главному терятелю, я тоже сочинил про них песенку и не преминул её спеть, благо она оказалась кстати. Правда, голоса у меня – никакого, но в наши дни это никому не помеха. Ведь теперь песни не поют, а нашёптывают. Поэтому я взял гитару и бодро зашептал:
Всё забывать мы мастаки
И всё терять горазды:
Тетрадки, кепки, гребешки.
Закладки, скрепки, ремешки,
Очки, платки, и кошельки,
И уйму чисел разных.
Но что б ни потеряли вы,
Надежде цену знайте,
И уж, конечно, головы,
Само собою, головы.
Ни в коем разе головы
При этом не теряйте.
Открыть мне удалось закон
(Прошу не сомневаться!):
Найти вам всё поможет он,
Вернуть вам всё поможет он,
Припомнить всё поможет он,
Закон ассоциаций!
– Значит, так, – сказал я без всякой паузы, как только песня была дошёптана, – что мы имеем на сегодняшний день? С одной стороны, мы имеем потерянное число и никакой надежды его восстановить, поскольку пострадавший не помнит ни одной его приметы, а без примет – какой розыск? С другой стороны, у нас есть мощное «вспоминательное» устройство, именуемое «ассоциациями», которое, однако, выражаясь научно, нуждается в энергичных поощрительных мерах. В переводе на общечеловеческий язык это означает вот что: под лежачий камень вода не течёт. Ассоциации капризны. Они приходят не тогда, когда их ждут, а когда им самим вздумается. Стало быть, надо их дразнить, будоражить, теребить – словом, всячески приваживать. Как вы думаете, что отсюда следует?
– Отсюда следует, что мы немедленно отправляемся гулять, – перебила меня девочка.
Вот чего я не ждал! Гулять? Да ещё в такую погоду?
Но тут оказалось, что дождь давно перестал. Что за окном сияет яркое солнце. И листва на деревьях такая свежая, такая сочная, что съесть её хочется. И тротуары до того промыты, что хоть босиком по ним шлёпай…
Словом, всё шло к тому, что мы отправляемся на охоту за ассоциациями, иными словами, начинаем увлекательную игру. Хотя по правилам этой игры нам всё же кое-чего не хватало. Одной небольшой, но важной детали. Одной маленькой точки. И точку эту поставила девочка.
– Леди и джентльмены, – сказала она торжественно, обращаясь, как видно, не только к нам, но и к себе самой, – нам выпала честь найти важное утерянное число и стать участниками сыскной операции. Для этого у нас есть всё. Главный пострадавший, именуемый также Главным терятелем. Главный сыщик – он же Главный находитель. Главная ищейка по прозвищу Пуся. И наконец, Главный секретарь, который обязуется записывать по дороге всё, достойное внимания.
Тут она извлекла из сумки блокнот с шариковой ручкой, подняла его, как для присяги, и поклялась честно и бесстрашно выполнять свой сыскной долг. Мы с Главным терятелем последовали её примеру. Пуся выдал напоследок сдвоенное «тяв-тяв». И новоявленная сыскная группа ринулась на свою числоразыскательную операцию.
ЧАШКА ЧАЯ, ДЕСЯТЬ ФИШЕК
Мы вышли из Стола находок и остановились в нерешительности. Куда идти? Если бы речь шла о пропавшем слоне, всё было бы ясно. На слоновьи ассоциации следует охотиться в Африке. Или в Индии. Или, на худой конец, в местном зоопарке. Другое дело – ассоциации числовые. Они могут возникнуть где угодно, по той простой причине, что числа – всюду.
Вот улица. У неё две стороны. На обеих – дома. Все они пронумерованы. На одной стороне – номера чётные, на другой – нечётные. И что это, если не числа? Или другой пример: дом. Стар он или нов, мал или велик, низок или высок – в любом случае у него есть окна, двери, лестницы, ступеньки и, уж конечно, не меньше одного этажа. Всё это опять-таки легко пересчитать.
То же самое можно сказать о любом без исключения предмете. Или растении. Или живом существе. Даже таком крохотном, как Пуся, у которого есть короткие лапы, хвост, чудесные уши с кисточками, мокрый холодный нос, любопытные пуговки-глаза, свежий розовый язык, острые белые зубки и, наконец, чёрная лохматая шёрстка, состоящая из шелковистых волосков. Сосчитать их, правда, вряд ли удастся – разве что электронно-вычислительной машиной…
Да, прав был великий математик Лобачевский! Поистине, нет ничего на свете, чего нельзя было бы выразить числами. И раз числовые ассоциации могут возникнуть всюду, почему бы нам не отправиться в парк? По крайней мере, совместим приятное с полезным… Но в том то и дело, что парка в Энэмске нет. Почему? Да потому, что весь он от начала до конца – чудесный громадный парк.
Сами понимаете, что выбор маршрута в таких условиях – дело нелёгкое, и мы тотчас заспорили. Положение сложилось почти такое, как в известной басне Ивана Андреевича Крылова, где лебедь рвётся в облака, рак пятится назад, а щука тянет в воду. С той разницей, что в нашей компании был и щенок. Он-то и решил исход дела! Солнце, зелень, промытый дождём воздух – всё это привело его в восторг, и, не обращая на нас ни малейшего внимания, он помчался вперёд, оглашая улицу радостным тявканьем. Мы, естественно, помчались за ним и вскоре очутились у небольшого уютного павильона с заманчивой вывеской: «Чашка чая, десять фишек».
Тут Пуся остановился как вкопанный, а девочка, наоборот, нетерпеливо заплясала на месте и заявила, что ей страсть как хочется чаю с печеньем. Пришлось объяснить, что фишки – не печенье, а жетончики с цифрами и что в павильоне, но-видимому, играют в какую-то числовую игру.
– Вот и прекрасно, – обрадовалась она. – Мы с Пусей будем пить чай, вы (это она мне!) – играть в числовую игру, а Главный терятель – подстерегать ассоциации.
– Благодарю вас, – иронически расшаркался Главный терятель, – очень, очень вам признателен.
Как я и предполагал, в павильоне действительно играли в числовую игру, и даже не в одну, а во многие. Хотя все они, так или иначе, были связаны с девятью цифрами десятичной системы счисления – той самой, которой мы с вами пользуемся. Но не ошиблась и девочка, когда думала, что фишки – это печенье. Здешние фишки и впрямь выпекают в кондитерской. Все они круглые, ароматные, румяные, только вместо рисунка на них цифры. По одной на каждой. Раздают их при входе в целлофановых пакетиках. В каждом пакетике набор из десяти сдобных кругляшек с цифрами от нуля до девятки включительно. Получив такой набор, посетитель занимает место у большого стола и раскладывает свои фишки на чистой бумажной салфетке.
Вы, конечно, хотите знать, где же обещанный чай? Не торопитесь. Чай подадут позже, когда игра окончится. И по-моему, это очень предусмотрительно. Ведь если чай принести сразу, все тут же позабудут об игре и через минуту от фишек ничего не останется. Потому что фишки с чаем – это вам не фишки всухомятку! Да и чай после задачи – это не чай до задачи. Сознание честно выполненного долга делает его вдвое… нет, втрое вкуснее.
Я не обмолвился, назвав игру задачей. Здешние игры ничем от задач не отличаются. Нам, в частности, предложили вычислить, сколько натуральных чисел можно составить из десяти фишек. Задача полезная, и я предложил заняться ею сообща.
Прежде чем приступить к решению, мне захотелось проверить, хорошо ли усвоила девочка наши утренние беседы в Столе находок, и я спросил, что ей известно о натуральных числах.
– Натуральные числа – это печенье! – выпалила она.
На первый взгляд, ответ несуразный. Но на самом дело он недалёк от истины.
Натуральные числа – самые древние на земле. Они появились тогда, когда людям понадобилось сосчитать созданное натурой, то есть природой: коз, овец. Звериные шкуры. Плоды. Деревья. То, чем питались, прикрывали наготу, обогревались в стужу, торговали. Вернее, менялись. Потому что в те далёкие времена денег ещё не было. И с этой точки зрения печенье, да ещё перенумерованное, несомненно, относится к натуральным числам. Хотя вообще-то название это условно. Потому что числа обладают одной удивительной способностью.
Как правило, они появляются на свет, когда мы пересчитываем вполне определённые, или, как говорят, конкретные предметы, но потом от этих предметов отделяются, а лучше сказать – отвлекаются, и продолжают жить отвлечённой, совершенно самостоятельной жизнью. При этом происходят вещи необычайные, поразительные и для нас с вами далеко не безразличные. Числа помогают нам познавать мир. Благодаря им учёные обнаруживают доселе незримые планеты, открывают неизвестные законы, создают сложнейшие машины. Словом, отвлечённые числа сильнейшим образом влияют на конкретную действительность… Впрочем, об этом я девочке ещё не рассказывал. Почему? Да потому, что всему своё время. Так что вернёмся лучше к нашей задаче.
Первым её решил Главный терятель, хотя и неверно. Он рассуждал так: какое самое большое натуральное число можно составить из десяти цифр? Ясно, что десятизначное. А наибольшее десятизначное число равно десяти миллиардам без единицы: 9 999 999 999. Это-то и есть число всех натуральных чисел до десятизначных включительно.
К сожалению, Главный терятель не понял задачи. Ведь речь в ней вовсе не обо всех натуральных числах до десятизначных включительно, а лишь о тех, которые можно составить из десяти фишек! Не говорю уже о том, что среди этих десяти фишек всего одна девятка, а в его числе – десять…
– Вот что значит – начать не с того бока, – укоризненно вздохнул я.
– А мы начнём с того, – сказала девочка. – Как вы думаете, сколько однозначных натуральных чисел можно получить из десяти фишек?
– Смешно! – пожал плечами Главный терятель, который успел уже перенять любимое девочкино словечко.
1 2 3 4 5 6 7 8 9 10 11 12


А-П

П-Я