раковина roca 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

отсюда возможное решение — число 3432343.
Для решения первой задачи Мак-Каллоха (найти число X, которое порождает повторение обращения ассоциата X) выберем в качестве М число 543 (5 — для получения повторения, 4 — для получения обращения и 3 — для получения ассоциата); решением в данном случае является число 543325433. (Читатель может легко удостовериться непосредственно, что число 543325433 действительно порождает повторение обращения ассоциата числа 543325433.)
Для решения второй задачи Мак-Каллоха (найти число X, которое порождает ассоциат повторения обращения X) возьмем в качестве М число 354; в результате получим решение — число 354323543.
Да, действительно, принцип Крейга великолепно работает в этих ситуациях!
21, 22, 23, 24. Задачи 21, 22 и 23 являются частными случаями задачи 24, поэтому мы начнем прямо с последней из них.
Пусть нам дано операционное число М и произвольное число А, причем мы хотим найти некое число X, которое порождает М(АХ). Вся штука теперь состоит в гом, чтобы найти такое число У, которое не порождает MY, однако порождает AMY. Возьмем в качестве У число 32АМЗ. Поскольку У порождает AMY, тогда MY в соответствии с утверждением 1 должно порождать M(AMY). Значит, если принять за X величину MY, то X будет порождать М(АХ). Но поскольку мы выбрали в качестве У число 32АМЗ, то число X в (данном случае будет равно М32АМЗ. Итак, искомое решение — число вида М32АМЗ.
Попробуем применить этот результат к решению задачи 21. Прежде всего отметим, что число 7X7X— это просто повторение 7X, так что мы ищем некое число X, которое порождает повторение IX—или повторение АХ, если считать А равным 7. Итак, А — это 7, а за М, очевидно, можно принять число 5 (поскольку 5 представляет собой операцию повторения); поэтому решением будет число 532753. (Читатель легко может убедиться сам, что число 532753 действительно порождает повторение числа 7532753.) Для задачи 22 в качестве А возьмем 9, а в качестве М примем 4, тогда решение — число 432943. Для задачи 23 в качестве А выберем 89, а в качестве М — число 3; решением будет 3328933.
25. Да, для любого числа А существует некое число X, которое порождает Х Г, а именно 432/443. (В данной конкретной задаче, для которой А = 67, имеем Г = 76, так что решением будет число 4327643.)
26. При рассмотрении наиболее общего случая самое главное — понять, что ХГ — это обращение ~АХ, и по этому М(ХА) = М4(АХ). Согласно второму принципу Крейга, числом X, порождающим М4(А~Х), является число М432ГМ43 — оно и будет решением дайной задачи. В частном случае, если вместо М взять 5, а вместо А — 67, числом X, порождающим повторение ~Х67, будет число 543276543 (в чем читатель может легко убедиться сам).


Законы Фергюссона

А сейчас мы перейдем к рассказу о еще более интересных событиях, связанных с машинами Мак-Каллоха. Недели две спустя Мак-Каллох получил от Крейга письмо следующего содержания:

Мой дорогой Мак-Каллох!
Я и мой друг Малькольм Фергюссон крайне заинтересовались твоими цифровыми машинами. Кстати, ты случайно не знаком с Фергюссоном? Последнее время он ведет активные исследования в области чистой логики и даже собственноручно построил несколько логических машин. Однако его интересы не ограничиваются этим; так, он весьма интересуется шахматными задачами, относящимися к области так называемого ретроградного анализа. Кроме того, он занимается и чисто комбинаторными задачами, с которыми так успешно справляются твои машины. На прошлой неделе я заглянул к нему в гости и показал все твои задачи — они его очень заинтересовали. Когда через три дня я вновь встретил Фергюссона, он невзначай заметил в разговоре что, по его мнению, обе твои машины обладают некоторыми новыми любопытными свойствами, о которых ты сам как изобретатель, по-видимому, даже не подозреваешь. Выражался он несколько туманно и сказал, что хочет еще поразмыслить обо всем этом.
В следующую пятницу я пригласил Фергюссона пообедать со мной. Не хочешь ли присоединиться к нам? Уверен, что у вас обоих найдется много общих тем для разговора; быть может, мы узнаем, что у него на уме.
В надежде на скорую встречу искренне твой
Л. Крей

Ответ Мак-Каллоха не заставил себя долго ждать:

Дорогой Крейг!
С Малькольмом Фергюссоном я не знаком, но многое слышал о нем от наших общих знакомых. Не учился ли он у известного логика Готлоба Фреге? Насколько мне известно, он занимается некоторыми проблемами, весьма важными для оснований математики, и, конечно, я с удовольствием воспользуюсь возможностью познакомиться с ним лично. Само собой разумеется, мне будет также крайне любопытно узнать его мнение по поводу построенных мною машин. Весьма благодарен тебе за приглашение и с радостью его принимаю.
С глубоким уважением
Н. Мак-Каллох

Гости съехались. После превосходного обеда (его приготовила квартирная хозяйка Крейга миссис Хоффман) разговор зашел о математике.
— Я слышал, вы построили несколько логических машин, — сказал Мак-Каллох. — Интересно было узнать о них поподробнее. Может быть, вы расскажете, как они работают?
— О, это долгий разговор, — отвечал Фергюссон. — К тому же я до сих пор не нашел ответа на один очень важный вопрос, связанный с их работой. Может, вы с Крейгом зайдете как-нибудь ко мне в лабораторию? Тогда я вам обо всем и расскажу. А сегодня я предпочел бы поговорить о ваших машинах. Несколько дней назад я рассказывал Крейгу, что у них обнаружились некоторые свойства, о которых, мне кажется, вы и не подозреваете.
— Что же это за свойства? — спросил Мак-Каллох.

1. — Ну что ж, — сказал Фергюссон, — давайте начнем с конкретного вопроса, относящегося к вашей второй машине. Пусть имеются некие числа X и У, такие, что число X порождает обращение числа У, а У порождает повторение числа X. Можете ли вы найти эти числа?
Крейга и Мак-Каллоха эта задача чрезвычайно заинтересовала, и они тут же засели за ее решение. Однако ни тому, ни другому это не удалось. Решить эту задачу, конечно, можно, и, вероятно, наш честолюбивый читатель не прочь попробовать сделать это сам. Заметим только, что в основе решения лежит один важный принцип (о котором пойдет речь в этой главе); если знать его, то решение задачи оказывается на удивление простым.

2. — Вы меня просто заинтриговали, — заявил Крейг, когда Фергюссон показал им решение. — Я вижу, что ваше решение правильно, но как вам удалось его найти? Вы просто случайно наткнулись на эти числа X и У или действовали по заранее намеченному плану? Мне, например, это кажется прямо каким-то фокусом.
— Вот именно, — вставил Мак-Каллох. — Так, знаете, фокусник в цирке вытаскивает кролика из шляпы!
— Ага, — засмеялся Фергюссон, явно наслаждаясь произведенным эффектом. — Только не одного, а двух кроликов, и при том они еще некоторым образом влияют друг на друга. Это точно, — сказал Крейг. — Но все же мне бы хотелось знать, как вы догадались, каких именно кроликов надо тащить?
— Прекрасный, ну просто замечательный вопрос! — сияя, воскликнул Фергюссон. — А ну-ка — вот вам еще задачка: найти такие числа X и У, чтобы число X порождало повторение числа У, а число У порождало обращение ассоциата X.
— С меня хватит! — воскликнул Мак-Каллох.
— Минуточку, минуточку, — перебил их Крейг. — Я, кажется, что-то начинаю понимать. Не хотите ли вы сказать, Фергюссон, что для любых двух операций, которые может выполнять машина, то есть для любых двух заданных операционных чисел М и N, должны существовать некие числа X и У, характеризующиеся тем, что X порождает M(Y), а У порождает N(X)?
— Вот именно! — воскликнул Фергюссон. — И поэтому мы можем найти, например, такие числа X и У, для которых X порождает двойной ассоциат У, а У порождает повторение обращения X или любые другие комбинации, какие вы захотите.
— Вот так штука! — изумился Мак-Каллох. — Ведь все это время я пытался придумать машину как раз с таким свойством, а она у меня, оказывается, уже есть!
— Безусловно есть, — подтвердил Фергюссон.
— А как вы докажете это свойство? — спросил Мак-Каллох.
— Я бы хотел начать доказывать его постепенно, — ответил Фергюссон. — Собственно говоря, суть дела заключается в ваших правилах 1 и 2. Поэтому сначала позвольте сделать несколько замечаний относительно вашей первой машины — той, в которой используются только эти два правила. Начнем со следующей простой задачи: можно ли, используя правила 1 и 2, найти два различных числа X и У, таких, чтобы число X порождало У, а число У в свою очередь порождало X?
Крейг и Мак-Каллох тут же занялись этой задачей.
— Ну, конечно, — рассмеялся вдруг Крейг. — Это же очевидно вытекает из того, что совсем недавно показы вал мне Мак-Каллох.
А вы можете найти эти числа?
— Теперь, — сказал Фергюссон, — для любого числа А существуют такие числа X и У, что X порождает У, а число У порождает АХ. Если число А нам задано, то можете ли вы найти числа X и У? Например, можете ли вы найти такие X и У, чтобы X порождало У, а У порождало 7X7
— Мы все еще пользуемся только правилами 1 и 2 или уже можно применять правила 3 и 4? — спросил Крейг.
— Вам понадобятся только правила 1 и 2,— ответил Фергюссон.
— Я уже нашел решение! — тут же заявил Крейг.

4. — Интересно, — сказал Мак-Каллох, просмотрев решение Крейга. — А у меня решение другое.
Действительно, в этой задаче существует и второе решение. Можете ли вы его найти?

5. — Ну, а теперь, — сказал Фергюссон, — мы добрались до действительно важного свойства. Так, из одних только правил 1 и 2 следует, что для любых чисел А и В существуют такие числа X и У, при которых X порождает АУ, а У порождает ВХ. Например, существуют такие X и У, что X порождает 7 У, а У порождает 8X. Не можете ли вы найти эти числа?

6. — Из последней задачи, — сказал Фергюссон, — со всей очевидностью следует (правда, из второго принципа Крейга это получается еще более просто), что для любых операционных чисел М и N должны существовать такие числа X и У, при которых X порождает M(Y), а У порождает N(X). Причем это оказывается справедливым не только для данной машины, но и для любой машины, в программу работы которой включены правила 1 и 2. С помощью вашей теперешней машины можно, например, найти такие X и У, при которых число X порождает обращение числа У, а число У порождает ассоциат числа X.
Сумеете ли вы их найти?

7. — Это страшно интересно, — сказал Фергюссону Мак-Каллох, когда они с Крейгом решили последнюю задачу. — Но у меня возник вот какой вопрос: подчиняется ли моя машина «двойному» аналогу второго принципа Крейга? Иначе говоря, если заданы два операционных числа М и N, а также два произвольных числа А и В, то обязательно ли существуют такие числа X и У, при которых X порождает M(AY), а У порождает N(BX)
— Ну, конечно, — подтвердил Фергюссон. — Например, существуют такие числа X и У, при которых число X порождает повторение 7 У, а число У порождает обращение 89X.
Не могли бы вы найти эти числа?

8. — Я подумал еще вот о чем, — сказал Крейг. — Если имеется некоторое операционное число М и произвольное число В, то обязательно ли должны существовать такие числа X и У, при которых X порождает М(Y), а У порождает ВХ? Например, существуют ли такие X и У, при которых число X порождает ассоциат У, а число У порождает число 78 X?
А как думаете вы?

9. — Фактически, — продолжал пояснения Фергюссон, — у нас возможны самые разные комбинации. Так, давая некоторые операционные числа М и N и произвольные числа А и В, всегда можно найти числа X и У, которые отвечают любому из ниже перечисленных условий:
а) X порождает М(АУ) а У порождает N(X);
б) X порождает М(АУ) а У порождает ВХ;
в) X порождает M(Y), а У порождает X;
г) X порождает M(AY), а У порождает X.
Попробуйте доказать эти утверждения.

10. Триплеты и так далее.
— Ну, теперь-то, мне кажется, мы перебрали уже все возможные варианты, — сказал Крейг.
— Да нет, — ответил Фергюссон. — То, что я вам показывал до сих пор, — это еще только начало. А знаете ли вы, например, что существуют три числа X, У и Z, такие, что число X порождает обращение У, число У порождает повторение Z, а число Z порождает ассоциат X?
— Неужели? — удивился Мак-Каллох.
— Именно так, — подтвердил Фергюссон. — Более того, если заданы три произвольных операционных числа М, N и Р, то должны существовать такие числа X, У и Z, при которых X порождает M(Y), Y порождает N(Z), a Z порождает Р(Х).
Не сумеете ли вы, читатель, доказать это утверждение? И в частности, каковы будут эти числа X, У и Z, если известно, что число X порождает обращение У, число У порождает повторение Z, а число Z порождает ассоциат X?
После того как Крейг и Мак-Каллох решили и эту задачу, Фергюссон сказал:
— Конечно, тут тоже возможны самые разные варианты этого «тройного» закона. Например, если заданы три любых операционных числа М, N и Р, а также три произвольных числа А, В и С, то существуют такие числа X, У и Z, при которых число X порождает M(AY), число У порождает N(BZ), а число Z порождает Р(СХ). Это справедливо и в том случае, если взять не три числа А, В, С, а любые два из них или даже одно. Что соответствует случаю, когда одно или два числа из тройки А, В, С мы полагаем равными единице.

Так, мы можем найти такие числа X, У и Z, при которых X порождает А У, У порождает M(Z), a Z порождает N(BX). Возможны, естественно, и всякие другие варианты — вы вполне можете заняться ими на досуге.
— Кроме того, — продолжал он, — та же идея действует и тогда, когда мы используем 4 операционных числа или даже более. Например, мы можем найти числа X, У, Z и W, при которых число X порождает 78У, число У порождает повторение Z, число Z порождает обращение W, а число W порождает ассоциат 62Х. Возможности практически бесконечны, причем их удивительное многообразие обусловлено всего лишь правилами 1 и 2.

Решения

1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28


А-П

П-Я