https://wodolei.ru/catalog/mebel/Briklaer/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

— Единственно, что хотелось бы мне знать, — это каким путем ты шел, чтобы найти исходное число N: так сказать, методом «тыка» или же ты действовал по заранее намеченному плану? И кроме того, является ли найденное тобой N единственно возможным числом, порождающим ассоциат самого себя, или же существуют и другие такие числа?
Тогда Крейг рассказал о своем методе отыскания числа N в последней задаче, а также ответил на вопрос Мак-Каллоха о том, существуют ли другие возможные решения этой задачи. Скорее всего, ход суждений Крейга должен заинтересовать читателя; более того, он существенно облегчает нахождение решений нескольких задач этой главы.

4. — Кстати, по поводу моего последнего вопроса, — сказал Мак-Каллох. — Как ты решил первую задачу? Существуют ли еще какие-нибудь числа, которые порождают сами себя?
Ответ Крейга приведен в решениях.

5. — Далее, — продолжал Мак-Каллох, — имеется число N, которое порождает число 7N (то есть за семеркой следует N). Мог бы ты его найти?

6. — Рассмотрим еще один вопрос, — сказал Мак-Каллох. — Существует ли такое число N, чтобы число 3N порождало ассоциат самого числа N?

7. — А существует ли такое N, — спросил Мак-Каллох, — которое порождает ассоциат числа 3N?

8. — Пожалуй, самая интересная особенность моей машины заключается в том, — сказал Мак-Каллох, — что для любого числа А существует некое число У, которое порождает число AY. Как доказать это утверждение, и как по заданному числу А найти такое число У?
Примечание. Этот принцип, и в cамom деле очень простой, на практике оказывается еще более важным, нежели предполагал в тот момент Мак-Каллох! В этой книге мы столкнемся с ним еще не раз, и поэтому в дальнейшем будем называть его законом Мак-Каллоха.

9. — Далее, — продолжал Мак-Каллох, — всегда ли для сданного числа А существует некое число У, которое порождает ассоциат числа АУ? Существует ли, например, число, которое порождает ассоциат числа 56У, и если это так, то что это за число?

10. — Еще один интересный факт, — сказал Мак-Каллох, — заключается в том, что существует некоторое число N, которое порождает двойной ассоциат самого себя. Можешь ли ты найти это число?

11. — Кроме того, — сказал Мак-Каллох, — для любого заданного числа А существует число X, которое порождает двойной ассоциат числа АХ. Не мог бы ты сообразить, как найти такое число X, если число А нам задано? К примеру, как найти число X, которое порождает двойной ассоциат числа 78Х?

А вот еще несколько задач, с которыми Мак-Каллох познакомил в тот день Крейга. (За исключением последних, эти задачи не имеют особого теоретического значения, однако читателю, может быть, доставит удовольствие повозиться с ними)

12. Найти число N, такое, чтобы число 3N порождало число 3N.

13. Найти число N, такое, чтобы число 3N порождало число 2N.

14. Найти число N, такое, чтобы число 3N порождало число 32 N.

15. Существует ли такое число N, для которого числа NNN2 и 3N2 порождали бы одно и то же число?

16. Существует ли такое число N, ассоциат которого порождал бы число NN? Существует ли несколько таких чисел N?

17. Существует ли такое число N, для которого число NN порождало бы ассоциат этого N?

18. Найти число N, такое, чтобы ассоциат числа N порождал двойной ассоциат N.

19. Найти число N, которое порождает число N23.

20. Один отрицательный результат.
— Знаешь, — сказал Мак-Каллох, — я довольно долго пытался найти число N, которое порождает число N2, однако до сих пор все мои попытки не увенчались успехом. Интересно бы узнать, такое число на самом деле не существует или же у меня просто не хватает сообразительности, чтобы его отыскать?
Эта задача сразу завладела вниманием Крейга. Он тут же вытащил записную книжку и карандаш и погрузился в размышления. Спустя некоторое время он сказал:
— Не трать понапрасну силы, такое число просто не может существовать.
Как Крейг догадался об этом?

Решения

1. Таким числом является, например, число 323. В самом деле, поскольку число 23 порождает число 3 (согласно правилу 1), то, согласно правилу 2, число 323 должно порождать ассоциат числа 3, а это и есть 323 — как раз то же самое число!
Существуют ли другие такие числа?
По поводу ответа Крейга на этот вопрос смотри решение задачи 4.
2. Числом, которое нашел Крейг, было 33233. Действительно, любое число вида 332Х порождает двойной ассоциат X; так, число 33233 порождает двойной ассоциат числа 33 — то есть ассоциат ассоциата числа 33. Далее, ассоциат числа 33 есть исходное число 11233, и, следовательно, двойной ассоциат числа 33есть ассоциат числа 33233. Итак, число 33233 порождают ассоциат числа 33233, или свой собственный ассоциат.
Как же было найдено это число, и является ли полученное решение единственным? Крейг дает ответы на эти вопросы при решении следующей задачи.
3. Здесь рассказывается о том, как Крейг отыскал решение задачи 2, а также о том, как он сумел ответить на вопрос, существуют ли какие-либо другие решения этой задачи. Тут я предоставлю слово ему самому:
«Моя задача заключалась в том, чтобы найти число N, которое порождает число N2N. Ясно, что это число должно иметь вид 2X, 32Х, 332Х, 3332Х и т. д., причем мне нужно было отыскать X. Подошло бы в данном случае число вида 2X? Совершенно очевидно, что нет, поскольку число 2Х порождает число X, которое, понятно, является более коротким (содержит меньше цифр), чем ассоциат числа 2Х. Поэтому ни одно число вида 2Х никак не могло оказаться подходящим.
Что можно сказать по поводу числа вида 32Х? Оно также порождает ассоциат числа X, который, очевидно, содержит меньшее число цифр, нежели ассоциат числа 32Х.
Теперь попробуем число вида 332Х. Это число порождает двойной ассоциат числа X, который имеет вид Х2Х2Х2Х, тогда как нам необходимо получить ассоциат числа 332Х, то есть число, которое записывается в форме 332Х2332Х. Далее, может ли число Х2Х2Х2Х оказаться тем же самым числом, что и 332Х2332Х? Прежде всего, нужно сравнить относительную длину этих чисел. Так, если h—количество цифр в числе X, то число Х2Х2Х2Х должно иметь 4h+3 цифр (поскольку в нем четыре X и три двойки); в то же время число 332Х2332Х имеет 2h +7 цифр. Может ли 4h+3 равняться 2h+7? Да, но только в том случае, когда h=2. Итак, что касается длины, то число вида 332Х вполне может оказаться для нас подходящим, но лишь при условии, если количество цифр в X равняется двум.
Существуют ли еще какие-нибудь возможности? Посмотрим, например, что можно сказать по поводу числа вида 332Х. Такое число порождает тройной ассоциат числа X, который представляет собой число вида Х2Х2Х2Х2Х2Х2Х2Х, тогда как нам необходимо получить ассоциат числа 3332Х, который записывается как 3332X23332X. Могут ли эти числа оказаться одинаковыми? Вновь обозначая через h длину числа X, находим, что число Х2Х2Х2Х2Х2Х2Х2Х имеет 8h+7 цифр; в то же время число 3332Х23332Х имеет 2h+9 цифр. Равенство 8h+7 = 2h+9 может выполняться, только если h = 1/3, и, следовательно, в данном случае целочисленного значения не существует. Итак, числа вида 3332Х нам также не подходят.
Наконец, что можно сказать относительно числа вида 33332Х? С одной стороны, это число порождает четверной ассоциат числа X, который имеет длину 16/1 + 15; с другой стороны, сам ассоциат числа X имеет длину 2h+11. Ясно, что для любого целого положительного /I выражение 16h+15 больше, чем 2h+11, и, значит, число вида 33332Х порождает нечто слишком для нас большое.
Если мы теперь возьмем число, начинающееся не с 4, а с 5 троек, то несоответствие между длиной числа, которое оно вроде бы должно было порождать, и длиной числа, которое оно порождает на самом деле, окажется еще больше, а если мы возьмем число, начинающееся с 6 или более троек, то это несоответствие станет совсем большим. Таким образом, нам остается снова вернуться к числу 332 X как к единственно возможному решению задачи, причем X в этом случае должен быть числом, состоящим из 2 цифр. Итак, искомое число N должно иметь вид 332аb, где а и b — одиночные цифры, подлежащие определению.
Ясно, что число 332ab порождает двойной ассоциат числа ab, или число аb2аb2аb2аb. При этом необходимо, чтобы число 332 ab порождало ассоциат числа 332аb, который записывается как 332ab2332ab. Могут ли эти два числа оказаться одинаковыми? Для ответа на этот вопрос попробуем сравнить их на соответствие цифр:
аb2аb2аb2аb
332аb2332аb.
Сравнивая первые цифры каждого числа, мы видим, что а обязательно должно быть тройкой. Сравнение вторых цифр дает нам, что b также должно оказаться двойкой. Итак, число N = 33233 является решением нашей задачи и притом единственным».
4. — По правде говоря, — признался Крейг, — первую задачу я решал почти интуитивно; чтобы найти число 323, я не пользовался никаким специальным методом. К тому же я пока не успел обдумать вопрос, существует ли какое-либо иное число, которое порождало бы само себя.
— Однако, как мне кажется, ответы на эти вопросы не потребуют слишком много усилий. В самом деле, попробуем, к примеру, выяснить, не могло бы нам подойти какое-нибудь число вида 332Х. Такое число должно было бы порождать двойной ассоциат числа X, который представляет собой число вида Х2Х2Х2Х и имеет длину 4h+3, где А — длина числа X. С другой стороны, нам необходимо взять такое число, чтобы оно порождало число 332Х, которое в свою очередь имеет длину h+3? Вполне очевидно, что при любых положительных h величина 4h+3 всегда больше, чем h+З, и потому число 332Х будет порождать число, в котором окажется слишком много цифр. То же самое можно сказать, по поводу числа вида 3332Х, а также чисел, начинающихся с четырех и более троек, для них соответствующие расхождения по длине окажутся еще большими. Значит, единственной возможностью для нас остается число вида 32Х (очевидно, что число вида 2Х нам также не годится, поскольку оно не может порождать само себя — ведь оно порождает число X). Далее, число 32Х порождает число Х2Х, и, кроме того, требуется, чтобы оно порождало само себя, то есть опять 32Х. Поэтому числа 32Х и Х2Х должны совпадать. Обозначим через Л длину числа X, тогда число 32Х имеет длину h+2, а число Х2Х — длину 2h+1. При этом должно выполняться условие 2h+1 = h+2, откуда сразу следует, что h равно 1. Стало быть, число X состоит из одной-единственной цифры. Наконец, для какой цифры а имеет место условие a2a = 32a? Ясно, что а в этом случае должно быть тройкой. Итак, число 323 является единственным решением данной задачи.
5. Возьмем в качестве N число 3273. Это число порождает ассоциат числа 73, то есть число 73273, которое в свою очередь можно представить как 7N. Итак, число 73273 есть решение нашей задачи. (Кроме того, это решение — единственное, что легко можно показать с помощью сравнительного анализа соответствующих длин, подробно обсуждавшегося в последних двух задачах.)
6. Поскольку число 323 порождает само себя, то число3323 должно порождать ассоциат числа 323. Итак, если положить N = 323, тогда число 3N действительно порождает ассоциат числи N. (Это решение является единственным.)
7. Решением будет число 332333. Проверка: положим N равным этому числу. Тогда оно порождает двойной ассоциат числа 333, который в свою очередь является ассоциатом числа 3332333 — или, иными словами, ассоциатом числа 3N.
8. Очевидно, что эта задача представляет собой прямое обобщение задачи 5. Там мы видели, что при N = 3273 число N порождает число 7N. Цифра 7 не играет в данном случае никакой особой роли. Действительно, для любого числа А справедливо условие: если мы положим Y = 32A3, то число У будет порождать число AY (поскольку оно порождает ассоциат числа A3, который записывается как A32A3 и который в свою очередь представляет собой число А У). Итак, например, если мы хотим найти число У, которое порождало бы число 837Y, то мы должны выбрать У равным 328373.
Указанный факт, как выяснится ниже, имеет важное теоретическое значение!
9. Ответом на поставленный вопрос будет «да». Возьмем в качестве У число 332A33. Это число порождает двойной ассоциат числа АЗЗ, который в свою очередь является ассоциатом числа A332/433. Но число A332A33 и есть АY; следовательно, число У порождает ассоциат числа А У.
Для частного примера, предложенного Мак-Каллохом (найти число У, которое порождало бы ассоциат числа 56 У), решением будет число У=3325633.
10. Решением является число 3332333. Оно порождает тройной ассоциат числа 333, который является двойным ассоциатом ассоциата числа 333. При этом ассоциат числа 333 есть число 3332333, и, стало быть, число 3332333 порождает двойной ассоциат числа 3332333.
Заметим общую систему: число 323 порождает само себя, число 33233 порождает свой ассоциат, число 332333 порождает двойной ассоциат самого себя. Далее, число 333323333 порождает свой тройной ассоциат, число 33333233333 порождает четверной ассоциат самого себя и т. д. (Во всем этом читатель вполне может убедиться сам.)
7. Решением является X = 3332333. Это число порождает тройной ассоциат числа A333, который является двойным ассоциатом ассоциата числа A333. При этом ассоциатом числа А333 оказывается число А3332АЗЗЗ, которое в свою очередь и есть АХ. Итак, число X порождает двойной ассоциат числа АХ.
В частном случае, когда А = 78, решением будет число 333278333.
12. Очевидно, что ответом будет N = 23. (Ведь мы уже знаем, что число 323 порождает само себя, поэтому, положив N = 23, мы действительно имеем, что число 3N порождает число 3N.)
13. Ответ: N = 22.
14. Ответ: N = 232.
15. Конечно, N = 2.
16. В этом случае вполне подойдет любая цепочка двоек.
17. Да; например, N = 32.
18. Положить N = 33.
19. Положить N = 32323.
20. Как читатель легко может удостовериться сам, любое число, начинающееся с двух или более троек, будет порождать число большей длины, нежели число N2. (Например, если N — число вида 332Х, и h — длина числа X, то само число N будет порождать двойной ассоциат числа X, который имеет длину 4h+3, в то время как само число N2 имеет длину h+4). Точно так же нам никак не подойдет ни одно число N вида
2Х, поскольку если и существует некое число N, которое порождает число N2, то оно обязательно должно быть вида 32Х. Далее, число 32Х порождает число Х2Х, тогда как нам требуется получить число 32X2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28


А-П

П-Я