унитаз подвесной черный 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Квантовая теория - это 27-28 годы, а порог в 67-м году был описан. Мои коллеги и я понимали, что он есть, но не очень понимали его существо. Но чувствовали себя примерно так же, как вы, когда вам рассказывают о квантовой теории: есть волновые свойства у центра массы зеркала килограмм 10-ти массой и при комнатной температуре, но при хорошей изоляции.
Вот здесь, так сказать, наступает некоторый критический момент в поиске. Вся система рассчитана лет на 30 работы. Сейчас идёт запись на двух антеннах. Запись закончится где-то в мае, начнётся обработка. Посмотрим, не видно ли чего-либо, а вдруг чего-нибудь обнаружили? Но, по-видимому, нет - по чувствительности дотянулись до расстояния немножечко больше, чем мегапарсек от Земли. Надо всё-таки хотя бы 10 мегапарсек иметь. Заведомо эта цифра будет получена в течение ближайших пяти лет, сомнений нет.
Дальше начнётся полная реконструкция, и будут использованы, в частности, разработки МГУ и разработки из Нижнего Новгорода. Я опускаю технические детали, ведь зеркало - это шедевр технологического и физического искусства, если хотите - науки, как угодно называйте.
Наконец, ещё одна трудность. Если квантовое поведение, если есть предел - как его обойти? Есть рецепт, он был найден исторически относительно недавно. Надо перестать избирать координату. Надо избирать, например, импульс. Импульс сам с собой коммутирует во времени у свободной массы. Но это сделать не очень просто. И надо как-то переделывать так, чтобы не слишком дорого было. всё-таки треть подводной лодки, правда? Это дорого. Это же не на войну, это же для удовлетворения любопытства.
А.Г. Ну, да.
В.Б. Посему, пришлось поработать. Есть элегантная модель, предложенная моим коллегой профессором Халили. Можно обойти проблемы, и относительно простые варианты наклёвываются, но они ещё не доработаны, над этим предстоит работать. Так что всё будет интересно и очень здорово. Положительный результат мы с Михаилом Васильевичем гарантируем. Может быть, так случится, что он будет несколько позже, чем мы хотели бы, но будет.
Михаил Васильевич дальше расскажет о других длинах волн и о других источниках. Но заведомо известно следующее: узнаем, какова популяция, сколько нейтронных звёзд в галактиках, и по форме всплеска узнаем, каково уравнение состояния нейтронной звезды. Заведомо. Второе. Есть большая вероятность, не на первом этапе, а на втором, обнаружить более редкие события, когда нейтронная звезда сталкивается с чёрной дырой. Вот тут будет момент истины для общей теории относительности.
А.Г. Есть чёрные дыры или их нет?
В.Б. То, что есть плотные образования, очень на них похожие, сомнений не вызывает. Вот есть ли у них корочка, радиус Шварцшильда? Когда гравитационный потенциал точно равняется «с2». Это означает, что теория относительности справедлива до этой точки, до этой величины. Вот на это никаких экспериментальных доводов нет. И посему это будет самое интересное - столкновение нейтронной звезды с чёрной дырой или двух чёрных дыр. Профессор Торн, которого я упоминал, говорит: «Внутри чёрной дыры нет ничего, кроме как пространства и времени». Это образец, если хотите, фундаментализма, фундаменталистского подхода к тому, куда придёт наука: количество терминов, количество сущностей должно сужаться. С его точки зрения нет ничего, кроме пространства и времени.
А.Г. Что же тогда образует эту страшную гравитацию и горизонт событий? Где масса-то, если есть только пространство и время?
В.Б. Гравитационная волна - это рябь на поверхности кривизны.
А.Г. Кривизны пространства-времени?
В.Б. Да. А источники - это особые точки, тут можно чисто геометрический подход применить, если считать, что точки существуют. Их нет на самом деле, но что-то похожее на точки. Это особенность для геометродинамики. Так можно, запрета нет. Но фундаментализм здесь просто пока ещё восклицает, никаких рецептов и проверяемых на опыте результатов не даёт. Вот это то, что я хотел рассказать.
А.Г. Я только один вопрос задам: а какова вероятность столкновения двух чёрных дыр?
В.Б. Есть несколько моделей. И астрофизики здесь до конца не договорились. Если одна галактика, то, согласно замечательному физику Хансу Бете и Брауну, его соавтору, - раз в десять тысяч лет.
А.Г. Это нейтронные звёзды? Или и то и другое?
В.Б. Нет, нейтронные звёзды только.
А.Г. А чёрные дыры? Коллапс двух чёрных дыр? Мне представляется вероятность меньшей, нет?
В.Б. Наверное, меньшей. Посему мечта не 10 в 26-й сантиметра, а чуточку увеличить чувствительность. И тогда мы дойдём почти до горизонта событий. Будут космологические расстояния, следовательно, мы будем…
А.Г. Тогда всё, что происходит, мы услышим.
В.Б. То, что происходило.
А.Г. Происходило, конечно.
В.Б. В оптимистическом случае - это сто миллионов лет тому назад, в пессимистическом - 300, 400 миллионов, может быть миллиард лет. Миллиард лет - это уже космологические расстояния. Но я не хочу отнимать время у Михаила Васильевича.
А.Г. Да, пожалуйста.
М.С. Вадим Борисович рассказал о том, что люди делают на Земле, а я расскажу о том, как люди пытаются зарегистрировать гравитационные волны в космосе. Вадим Борисович привёл очень яркий пример: если мы перейдём от обычных наземных излучателей к космическим, резко вырастает мощность. Естественно, чем больше у нас масса, чем быстрее движение, тем больше мощность гравитационного излучения. Самое быстрое движение, самые большие массы - это ранняя Вселенная. Пожалуйста, картинку следующую.
В ранней Вселенной мы можем ожидать сильного излучения гравитационных волн. Здесь изображён ещё один способ детектирования гравитационных волн, но теперь чисто космический способ. Здесь изображены три спутника. То кольцо, которое в левом нижнем углу, это один спутник, с двумя другими спутниками формируется треугольник. Но этот треугольник будет уже не на Земле, а на орбите Земли. Такой схемой можно будет детектировать очень долгие периодические источники.
А.Г. Это тот же интерферометр только таких размеров, что…
В.Б. Это то же самое, в принципе: 5 миллионов километров вместо четырех километров. Всё.
М.С. По сути, по идейной стороне он ничем не отличается от того интерферометра, про который рассказывал Вадим Борисович, за одним только исключением, что размеры его гораздо больше. Примерно в миллион раз. Соответственно, и планируемая чувствительность тоже больше. Наверняка можно сказать, что эти группы встретят очень большие технологические трудности. Но будем надеяться, что они их преодолеют. Пожалуйста, следующую картинку.
Какие могут быть источники в ранней Вселенной? Вы видите здесь нарисованную модель так называемого рождения гравитонов из вакуума. В ранней Вселенной у нас могло быть так называемое параметрическое усиление гравитонов, и те гравитационные волны, которые существовали в виде вакуумных колебаний, могли усиливаться и превращаться во вполне зримые и ощутимые гравитационные колебания, которые мы можем зарегистрировать сейчас.
Отличие от такого изображения только в том, что спектр гравитационных волн очень широкий. Самые высокие частоты - это 100 мегагерц, самые низкие частоты составляют величину порядка 10 в минус 18-й герц, или порядка современной постоянной Хаббла. Следующую картинку, пожалуйста. Здесь ещё раз показан прибор, который называется интерферометр «LISA», который, в принципе, может регистрировать гравитационные волны от ранней Вселенной.
Давайте мы пройдёмся по всему диапазону, который могут представлять гравитационные волны. Вадим Борисович рассказал об интерферометре «ЛАЙГО», который рассчитан, в основном, на диапазон обычных волн, это от 1 килогерца до ста герц. Другими словами, на тот диапазон, который мы можем слышать.
Интерферометр типа «LISA» предназначен для гораздо более низкочастотных гравитационных волн, период их от нескольких сотен секунд до нескольких часов. Электромагнитных волн такого диапазона просто нет, они не распространяются в нашем пространстве. Любая достаточно мягкая плазма их поглотит и не позволит им распространятся. Гравитационные волны чрезвычайно слабо взаимодействуют с веществом, и поэтому могут распространяться. Надо сказать, что трудность детектирования гравитационных волн связана именно с тем, что они слабо взаимодействуют с веществом, но в этом же и их прелесть. Они доходят до нас от самых ранних стадий эволюции Вселенной. Следующую картинку, пожалуйста.
Вот вы видите, схему интерферометра «LISA» на орбите. Жёлтый кружок в центре - это Солнце, белый круг - это орбита Земли, и вокруг штриховой линией показано положение трех интерферометров. Здесь будет бегать лазерный луч, который будет подвергаться действию гравитационной волны и который будет показывать экспериментаторам, насколько сильно действует на них гравитационная волна. Следующую, пожалуйста, картинку.
Эти три спутника будут двигаться вдоль орбиты Земли и совершать вот такие движения в течение нескольких лет, что позволит накапливать гравитационный сигнал от далёких источников - не только от двойных тёмных дыр или ещё от каких-то источников двойного типа, но, в частности, попробовать зарегистрировать гравитационно-волновой шум от ранней Вселенной. Это те гравитоны, которые были порождены в самые ранние моменты времени. Следующую картинку, пожалуйста.
Что мы можем сказать о другом диапазоне? Здесь представлен ещё один способ детектирования гравитационных волн. Надо сказать, что идейно он ничем не отличается от интерферометра. Здесь тоже у нас есть приёмник, но здесь приёмником выступает приёмная система радиотелескоп-пульсар. Это аналог лазера. Пульсар - это космический объект, который излучает очень высокостабильные импульсы электромагнитного излучения. Эти импульсы электромагнитного излучения обладают не намного худшей стабильностью, чем у хороших лазеров. И если на распространяющиеся электромагнитные волны от пульсара до радиотелескопа действуют гравитационные волны, как здесь показано, то они будут чуть-чуть менять фазу этих импульсов, и на радиотелескопе мы будем это видеть, как если бы они чуть-чуть запаздывали или шли с опережением. Поэтому, в сущности, здесь тоже реализуется интерферометр, но только с гигантскими размерами, поскольку расстояние от ближайшего пульсара до Земли, это сотни парсек. Это уже даже не 5 миллионов километров, это уже чисто астрономические расстояния.
У нас есть и другие способы детектирования очень низкочастотных гравитационных волн. Следующую, пожалуйста, картинку. Эти гравитационные волны имеют частоту, сравнимую с горизонтом нашей Вселенной, частоту порядка 10 в минус 18 герц. В данном случае они изменяют так называемую поверхность последнего рассеяния. То есть, ту поверхность, откуда до нас доходит реликтовое излучение, которое было рождено в ранней Вселенной. И мы можем наблюдать действие гравитационных волн в виде анизотропии этого реликтового излучения. Здесь я должен два слова сказать о том, что такое реликтовое излучение.
Надо сказать, что все тела при расширении охлаждаются, а при сжатии нагреваются. Наша Вселенная расширяется, и она охлаждается. В прошлом она была гораздо горячей, и в ней была так называемая первичная плазма. Эта первичная плазма состояла из нескольких сортов частиц, в частности, одними из таких частиц были фотоны. После того как плазма остыла достаточно для того, чтобы электроны рекомбинировались протонами, у нас образовалось нейтральное вещество, и фотоны начали распространяться свободно. Эти фотоны сейчас астрономы и наблюдают в виде реликтового излучения. Это реликтовое излучение пошло с так называемой поверхности последнего рассеяния. Представьте себе, что вот здесь у нас температура упала настолько, что фотоны смогли излучаться, распространяться оттуда свободно. При этом они распространяются во всех направлениях, но только в одном направлении - к телескопу - мы их увидим. И такие фотоны формируют то, что называется «поверхность последнего рассеяния», и мы видим источник во Вселенной, внутри которого мы находимся. Это гигантский источник, самый далёкий из известных во Вселенной, и называется он «поверхность последнего рассеяния».
Эта поверхность последнего рассеяния под воздействием гравитационных волн тоже немножко колышется, точно так же, как два плеча интерферометра. И мы наблюдаем это в виде горячих и холодных пятен реликтового излучения. Пожалуйста, следующую картинку.
Надо сказать, что анизотропия реликтового излучения была открыта примерно 10 лет назад, и в течение этих лет астрономы очень активно исследовали анизотропию реликтового излучения. Но новый этап этого изучения наступил с выводом спутника «WMAP», который расшифровывается так «Вилкинсон майкровейв анизотропи проуб». Этот спутник был запущен в точку Лагранжа L2 и служит для того, чтобы записать всю информацию об анизотропии реликтового излучения со всей сферы. Пожалуйста, следующую картинку. Вы видите карту, которую сделал этот спутник. Красные пятна на этой карте означают повышенное значение температуры в данном направлении, синие - пониженное. Итак, мы видим всю сферу вокруг нас в виде такой пятнистой поверхности. Гравитационные волны и формируют эту поверхность, они являются стохастическими волнами, но в отличие от тех волн, которые мы можем дать в проекте «ЛАЙГО», мы видим не изменения их во времени, а изменение их в пространстве, поскольку сама гравитационная волна - очень низкочастотная. Конечно, наблюдать, как она эволюционирует во времени, мы не можем. Тем не менее, мы можем наблюдать, как она эволюционирует в пространстве, как меняется она по сфере «последнего рассеяния».
Вот эта карта была сформирована буквально месяц назад. Американские астрономы, которые наблюдали на спутнике WMAP, опубликовали свои результаты в начале февраля. Надо сказать, что этот спутник будет работать ещё год, и будем надеяться, что они получат ещё более точные данные.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


А-П

П-Я