Качество, такие сайты советуют 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Вот покажите, пожалуйста, первую картинку.
Здесь на экране изображена веточка растения, дерева под названием Ti-codendron. Это родственник берёзы, ольхи или лещины (лесного ореха), относится к семейству берёзовых. Растёт Ticodendron в Центральной Америке. Обратите внимание на то, какие у него плоды. У нашей берёзки-то это орешек с крылышком, здесь же это сочная костянка, как у абрикоса. Тем не менее, это родственник берёзы. Так вот, в Центральной Америке, в трех странах Ticodendron - это лесообразующая порода, однако ботаниками он открыт только в начале 90-х. Покажите, пожалуйста, следующую картинку.
Это ещё более сенсационное открытие, сделанное в 1989-ом году. Это La-candonia schismatica, растение-паразит. Растение не зелёное, не имеющее хлорофилла и питающееся на корнях других растений. Тоже из Центральной и Южной Америки. Но самое удивительное - это цветок Lacadonia, в котором тычинки находятся внутри, пестики расположены снаружи. То есть это растение опровергает все основные каноны морфологии цветка.
Вот, пожалуйста, ещё следующая картинка. Это дерево хвойное дерево, новый род хвойных под названием Wollemia. Вы, наверное, знаете о араукариях. Их иногда выращивают у нас в комнатах. Это хвойные деревья, но с довольно широкими листьями. Так вот, Wollemia - это новый род хвойных, который найден в 1994-м году в национальном парке Волеми, в 200-х километрах от города Сиднея, в Австралии. Город Сидней не маленький, окрестности его достаточно хорошо исследованы. Вообще, австралийцы очень любят и знают природу, свою флору. Я был в Австралии, так по ходу могу сказать, что там знать растения так же престижно, как у нас, скажем, знать русскую классическую литературу. Это предмет национальной гордости. Тем не менее, в двухстах километрах от Сиднея до последнего времени росло дерево, о существовании которого ботаники не знали. Причём его ископаемые остатки были известны аж с мелового периода.
А.Г. То есть это кистепёрая рыба ботаники.
А.О. Ну, кистепёрая рыба всё-таки подревнее немножко. Но, тем не менее, хвойных не так много, и открытие нового рода хвойных - это достаточно интересное событие.
И покажите, пожалуйста, следующую картину. Вот Archaefructus, справа отпечаток, слева - реконструкция. Это самое древнее из известных растений, которые надёжно можно отнести к цветковым. Считается, что цветковые появились в меловом периоде. Это растение найдено в самых верхних слоях юрского периода в Восточном Китае. И найдено совсем недавно, я не помню точно год, но это 90-е годы. К сожалению, до наших дней Archaefructus не дожил, но это открытие действительно можно сравнить по значимости с открытием кистепёрой рыбы.
Д.С. На самом-то деле с такими проблемами ботаники без помощи математиков справляются. А вопрос-то стоит в том, что нужно разобраться с теми структурными единицами - таксонами, как говорят специалисты - где разобраться трудно. Этих одуванчиков, как говорится, чёртова уйма. Отличаются они, с одной стороны, значимо, а, с другой стороны, это очень сложная система. И тут, прежде всего, по-видимому, нужно поговорить о том, что такое вид, что мы, собственно, хотим узнать. А вещь это крайне непонятная.
А.О. Положение таково, что мы часто говорим об охране того или иного вида, об исчезающих видах. Но при этом большинство людей не знает, что само понятие вид в ботанике, вообще в биологии, чрезвычайно проблематично. Что, собственно, такое вид? Есть разные концепции вида, весьма противоречивые. В систематике растений есть такое негласное определение, что вид - это то, что считает видом систематик, компетентный в данной группе растений. Так вот, наши дискуссии с Дмитрием Дмитриевичем позволили предложить язык для описания и немножко лучшего понимания, что такое вид. Как ни странно, тут-то помогла геометрия фракталов.
Д.С. Вообще завет, которому нужно следовать, когда пытаешься применить математику где-нибудь вне её поля деятельности, такой: сначала нужно очень долго и внимательно слушать, что говорят специалисты. Очень плохо, когда математик идёт и начинает предлагать от того места, что он знает. А лучше всегда сначала очень-очень долго слушать, что говорят. Я в этом смысле нахожусь в тепличных условиях, у меня сын специалист по систематике растений. Я, собственно, через него познакомился с Алексеем Асафьевичем, и у нас дома такой постоянно действующий семинар по интересным вопросам науки.
А.Г. Повезло вам, да.
Д.С. Понимаете, создаётся действительно до некоторой степени парадоксальная ситуация. Вот московская школа ботаников видит гораздо меньше видов, чем санкт-петербургская, ленинградская школа ботаников. Само количество видов зависит от точки зрения. Такие на самом деле ситуации в математике известны. Тут немножко сбивает с толку то, что если мы попытаемся виды изобразить, как точки в каком-то пространстве, то это пространство лишь умопостигаемое. Я сейчас приведу пример, в котором тоже есть нечто подобное, только там ситуацию легче визуализировать. Можно следующую картинку?
Сейчас будет такая штука, которая называется «шкала геомагнитной полярности». Так в геологии принято показывать время. Это ось времени, разрезанная на три кусочка. Ось времени за 160 с чем-то миллионов лет. Указаны промежутки времени, когда ось магнитного диполя имела такое же направление, как сейчас. Они черненьким показаны. А беленьким - когда она была направлена прямо противоположно. Оказывается, что в ходе геологической истории ось магнитного диполя Земли быстренько переворачивается, практически мгновенно по геологическим масштабам.
Казалось бы, простой вопрос: сколько на этом рисунке зарегистрировано смен направлений геомагнитного поля. Казалось бы, совершенно ерундовый вопрос. Возьмём и посчитаем. Оказывается, это очень сильно зависит от того, с каким вы разрешением на принтере напечатаете эту картинку. Это показатель того, что на самом деле число инверсий здесь плохо определено. Число инверсий зависит от временного разрешения. Геологи так и описывают эту ситуацию. Вот есть, как они говорят, хроны, где преимущественно белое направление магнитного поля. Хроны, где были частые инверсии. Хроны, где было черненькое направление магнитного поля. А вопрос о том, сколько было конкретно инверсий, он не вполне хорошо определён. И если мы попытаемся измерять количество этих хрон, то их число будет расти в зависимости от временного разрешения заметно, степенным образом. Вот такие множества, они называются «фрактальными».
Это вообще интересная история. Слово «фрактал» вошло в науку с подачи учёного наших дней - Мандельброта, а на самом деле идея была высказана в 18-м году замечательным математиком Феликсом Хаусдорфом. Только он таких слов хороших не знал. Он сформулировал понятие «дробной размерности», мы его попозже посмотрим на других картинках. Множество точек на временной оси, когда случались инверсии, это множество с дробной размерностью. Оно занимает промежуточное положение между дискретным набором точек и непрерывной прямой. Все признаки того, что нечто подобное случается в гораздо более сложном пространстве признаков видов, налицо.
То есть складывается впечатление, что вопрос о том, сколько видов бывает одуванчиков поставлен не совсем правильно.
А.О. Или сколько видов во флоре Московской области.
Д.С. Да, сколько видов одуванчиков во флоре Московской области - это не совсем корректный вопрос.
А.О. Не обязательно одуванчиков, а вообще, сколько видов растений во флоре Московской области.
Д.С. По-видимому, какие-то хорошо определённые виды, разграниченные, организуются в роды, семейства, и так далее, а есть места в этом биологическом разнообразии, где эта структура выражена хуже. Здравый смысл подсказывает, что, наверное, там и происходит развитие биоразнообразия.
А.О. Как раз ваш доклад навёл на мысль о том, что вид, помимо того, что он представляет собой некий природный объект, может рассматриваться как место. Именно место. А место - штука, если вдуматься, очень странная. Вот у нас комната, в ней есть места для стула, для стола и так далее. Но мы не можем сказать, сколько в комнате мест. Место - такой странный объект, который устроен фрактально. Стол находится в комнате, в Москве, в России, на земном шаре. И представление о виде именно как о некотором месте в естественной системе, на мой взгляд, достаточно продуктивно. Конечно, вид можно рассматривать как группу особей, которые между собой скрещиваются или обладают какими-то общими признаками. Однако такое топологическое представление вида просто как места может быть полезно и для систематики, и для флористики.
Но сейчас, наверное, стоит перейти к ещё одному сюжету, связанному с применением математики, математических подходов в систематике растений. История с ним достаточно поучительна. В 1960-е годы немецкий энтомолог Вилли Хенниг разработал некоторый алгоритм для определения родственных отношений между группами организмов. Покажите, пожалуйста, следующую иллюстрацию.
Систематик работает с матрицей данных. Я здесь просто привёл пример такой матрицы данных. У нас есть четыре самых разных организма: лягушка, черепаха, ворона, кошка. И некоторый набор признаков. Здесь для примера пять признаков. У нас есть некоторое представление об эволюции этих признаков, исходящее из каких-то общебиологических представлений. И мы можем чисто формально построить так называемую «кладограмму», то есть дерево, иллюстрирующее родственные связи между данными организмами. Здесь получается, что положение вороны при данном наборе признаков оказывается несколько противоречивым, в то время как положение черепахи или кошки более-менее понятно. К кому ближе ворона - к кошке или к черепахе? Я подчёркиваю, это пример достаточно умозрительный. Реально всё сложнее. Но здесь возможны два варианта. С кошкой ворону сближает теплокровность, с черепахой её сближает сухая кожа, кожа, лишённая желез. И как раз существуют вычислительные алгоритмы для подобных операций, для построения подобных деревьев, и когда таких признаков и таких групп организмов сотни, то и таких неясных ситуаций тоже накапливается много. И поэтому долгое время систематики относились с большим скепсисом к таким кладистическим подходам. До 90-х годов, когда были усовершенствованы методы молекулярной биологии, и секвенирование, то есть определение последовательности ДНК, стало, в общем, рутинной лабораторной процедурой. Если не в России, по бедности, то на Западе. Сейчас это вопрос денег и небольшого количества рабочего времени. И как оказалось, сейчас…
Д.С. Но всё-таки в России тоже возможно…
А.О. Сейчас у нас, слава Богу, это тоже вполне возможно. В Москве существует лидирующая группа по молекулярной систематике под руководством Андрея Сергеевича Антонова при Московском университете…
Д.С. Да, я как представитель Московского университета не могу молчать…
А.О. Мы в нашем Ботаническом институте очень гордимся, что этой зимой мы провели первый секвенс, наконец-то освоили. То есть одно дело Москва, другое дело - остальная Россия. Это тоже не надо забывать.
Д.С. Ну, не надо… У вас всё-таки лидирующий ботанический институт в России…
А.О. Сейчас вопрос о чисто техническом оснащении. Так или иначе, обнаружились объекты, которых можно брать много, строить матрицы данных с очень большим числом равновесомых признаков. Тот нуклеотид или иной нуклеотид в данной позиции - вот вам и признак. Этих нуклеотидов тысячи. И если для морфологических признаков, которые видны простым глазом, этот подход действительно не очень работал, во-первых, потому что признаков не так много, а во-вторых, а может быть, даже во-первых, потому что эти признаки заведомо неравнозначны, и вообще любой объект мы можем расчленить на неопределённое число признаков, то последовательности ДНК дают нам совершенно объективное расчленение на чёткие и равновесомые признаки. И вот сейчас молекулярная систематика стала достаточно мощной областью, она уже прочно вошла, собственно, в ботанику. Хотя это и порождает определённые проблемы. Тут, наверное, вы расскажете лучше…
Д.С. Вы знаете, тут просто целый комплекс очень интересных математических задач. Во-первых, эти все алгоритмы требуют совершенно бешеного машинного времени. И в особенности оно нужно для того, чтобы сделать результаты по-настоящему убедительными. Даже несмотря на то, что сейчас персональные компьютеры очень быстро работают, эта задача явно не для персональных компьютеров. Очень здорово, что мы не только в молекулярной биологии проходим этапы технического совершенствования, но и в вычислительной математике. И буквально за последние года два, наверное, может, три стало реальным систематически пользоваться компьютерными кластерами. А эти задачи буквально идеально приспособленные для компьютерных кластеров. Тут нужно опробовать много вариантов кладограммы, дерева, которое мы смотрели. И можно очень здорово распараллелить эти задачи, поручить разным процессорам компьютерным изучать разные варианты. Вообще говоря, когда вы собираете кластеры из большого числа компьютерных процессоров, очень-очень не просто сделать так, чтобы они все были эффективно загружены. У нас сейчас в университете в вычислительном центре появился такой достаточно мощный кластер, а есть и в Академии наук, и в других местах. Это очень серьёзная область математики, как сделать хорошую загрузку разных процессоров.
Есть другая проблема. Классическая вычислительная математика сначала была проговорена и продумана ещё в докомпьютерную эпоху, когда сначала долго объясняли, как этот алгоритм работает и почему его так надо организовывать, а не как-нибудь по-другому. Я верю, что те, кто писал кладистические программы, хорошо понимают, почему они должны работать именно так. Но это знание, оно в очень многом не очевидно. И вот для компьютерной реализации это очень необычная ситуация, когда вроде бы есть работающая программа, а как она точно работает и почему - пользователи затрудняются объяснить.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


А-П

П-Я