https://wodolei.ru/catalog/ekrany-dlya-vann/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Они показаны там на рисунках. Здесь, в этих названиях, термины - проволоки, точки, ямы - очевидно связаны с геометрическим фактором, характерным для этих объектов. А прилагательное «квантовый» - отражает тот факт, что движение электрона в этих объектах подчиняется не классическим закономерностям, а квантовым. Поскольку размеры их как раз находятся в нанообласти.
Среди такого типа объектов особенно интересны кластеры. Эти объекты такие же, как квантовые точки, но они называются кластерами. Вот видите, такие элементы показаны на рисунке, в которых порядка тысячи атомов. И, конечно, движение электронов в них тоже является квантовым, т.е. это тоже чисто квантовые объекты. Их чёртова гибель, этих кластеров, поэтому это богатейшая область для создания новых материалов и новых приборов.
А.Г. Простите, сам кластер ведёт себя как макрообъект, а электроны внутри кластера ведут себя уже как квантовые объекты?
А.З. Электроны как квантовые, и сам кластер ведёт себя тоже так же, я буду по этому поводу позже говорить. То есть сам кластер в некотором смысле ведёт себя тоже как квантовый объект. У него есть некая коллективная, как её называют, переменная, которая подчиняется законам квантовой механики. Я об этом расскажу попозже.
Мы работаем с магнитными кластерами. Они интересны тем, что у них появляется дополнительная степень свободы - магнитная. Ею можно управлять, поэтому свойства у них более разнообразные. Интересно, что именно магнитные нанообъекты пришли на финиш практического применения раньше других. Но об этом расскажет Константин.
К.З. Раздел электроники, который занимается магнитными наноструктурами называется «спинтроника». В отличие от классической микроэлектроники, которая использует только заряд электрона, спинтроника ещё использует его магнитный момент, т.е. появляется дополнительная степень свободы.
Рождением этого направления можно считать открытие эффекта гигантского магнитосопротивления в 88 году. Что это за эффект? Берётся трехслойная структура из двух магнитных слоёв и немагнитной проводящей прослойки. Вот нечто подобное показано на рисунке. Электрическое сопротивление такой структуры зависит от взаимной ориентации намагниченностей в магнитных слоях. В первых структурах, в которых этот эффект был обнаружен, величина эффекта - так называемое GMR-соотношение - составляло 6%, сейчас получены такие материалы, в которых оно доходит до 20% и более при комнатной температуре.
Что такое GMR-соотношение? Это разница между сопротивлением структуры при параллельном направлении намагниченности в слоях и при антипараллельном, т.е. антиферромагнитном. Первое практическое применение таких структур - это головки жёстких дисков. Не все заметили этот факт, но буквально за несколько лет информационная плотность жёстких дисков увеличилась в 20 раз - благодаря использованию этого эффекта.
А.З. Простите, я перебью. GMR-эффект - это как раз наноэффект. Размеры элементов здесь должны быть много меньше длины свободного пробега.
К.З. Да, в больших структурах это всё не работает.
Я здесь остановлюсь на том, как устроен жёсткий диск. Фактически этот диск покрыт магнитным материалом, и информация хранится в форме доменной структуры, которая создана на поверхности этого диска. И если нам нужно считать какую-то информацию с какой-то области диска, эта область подводится под GMR-считывающую головку, в которой один магнитный слой, в нём намагниченность фиксированная, а другая меняется благодаря магнитостатическому взаимодействию с поверхностью доменной структуры. И в зависимости от того, единица или ноль записана в этом бите, т.е. в этой области диска, меняется (или не меняется) ориентация нижнего слоя, и мы получаем сигнал или не получаем его. То есть в бинарном виде это работает.
И, естественно, огромная задача для индустрии, которая занимается этими дисками, как можно меньше сделать размер, который занимает один бит информации. То есть, как можно плотнее записать. Но на этом пути существует так называемый суперпарамагнитный барьер, предел. Что это такое? Существует такой критический размер домена, при котором из-за термофлуктуаций он спонтанно перемагничивается. То есть без действия каких-либо внешних полей информация теряется. То есть ниже, мельче, чем позволяет это ограничение, не получается сделать величину бита.
А.Г. Технологически не получается или теоретически? Потому что если флуктуация температурная, то можно придумать какую-то систему защиты, стабилизации.
А.З. Ну, например, понизить температуру устройства - правда, это усложняет систему колоссально.
А.Г. Да-да-да, то есть теоретически это возможно, технологически это невыгодно.
К.З. Это абсолютно правильно. То есть размер зависит от многих факторов, в том числе и от материала. Есть такая величина - константа магнитной анизотропии. Она описывает, насколько жёстко держится намагниченность, насколько велика коэрцитивная сила. Но с другой стороны, мы не можем сильно увеличивать эту константу, потому что тогда усложняется запись. То есть нам большее поле надо приложить локально для того, чтобы изменить битовое состояние. И опять же это усложнение системы. Сейчас один из путей решения этой проблемы - создание так называемой пространственно неоднородной магнитной среды. В отличие от современных дисков, которые представляют собой сплошную магнитную поверхность, на немагнитную поверхность в этом случае нанесены магнитные частицы с каким-то определённым периодом.
А.З. Магнитные точки даже.
К.З. И фактически бит хранится в форме ориентации намагниченности одной частицы. Это вот позволяет несколько отодвинуть суперпарамагнитный предел. И отодвинуть, то есть уменьшить размер бита, т.е. увеличить плотность записи. Сейчас цель индустрии жёстких дисков - достичь плотности 100 гигабит на квадратный дюйм. Считается, что это будет достигнуто в этом или в следующем году.
А.Г. Но это будет предел для этой технологии?
К.З. Ну, это некий шаг, который нужно сделать.
А.Г. 100 гигабит на квадратный дюйм? Потрясающе.
К.З. Следующее коммерческое применение нанотехнологии, которое будет через несколько лет на рынке, это магнитная оперативная память. В настоящее время используется полупроводниковая магнитная память, но главная её слабая сторона состоит в том, что при отключении питания информация теряется. То есть, как мы все знаем, надо тратить некоторое время на перезагрузку компьютера. И если вдруг выключается питание, то мы теряем наши несохраненные документы.
С магнитной памятью дело обстоит совершенно по-другому. Как устроена ячейка магнитной памяти? Это такая же трехслойная структура, и в простейшем случае, единица или ноль хранится в форме взаимной ориентации векторов намагниченности. То есть при отключении питания битовое состояние, естественно, сохраняется. И потом, если мы представим, что из таких элементов мы строим матрицу, то есть, таким образом мы можем считывать информацию с каждого элемента.
А.Г. А вот эта кластерная структура записи информации, насколько важно её сохранить при новых технологиях или есть другие пути записи?
К.З. То есть вы имеете в виду жёсткие диски?
А.Г. Да.
К.З. Нет, то, что я говорю, это просто уменьшение битового размера. То есть технология записи остаётся в нашем случае та же самая.
А.Г. Понятно.
К.З. Но буквально в последние годы открыты некоторые новые эффекты, которые оставляют далеко позади эффект гигантского магнитного сопротивления. В том числе магнитное сопротивление в нано-проволоках и нано-мостиках. Что такое нано-мостик? В 2000-м, если я не ошибаюсь году, в Испании были проведены эксперименты, состыковывались две нано-проволоки с атомарной толщины наконечниками, до тех пор пока не получали электрический контакт. А затем перемагничивали одну из нано-проволок. И величина магнитосопротивления получалась фантастическая - сотни и тысячи процентов.
А.З. Даже недавно получено 100 тысяч.
К.З. 100 тысяч процентов - то есть это фактически бесконечность.
А.З. Здесь квантовые эффекты проявляются…
А.Г. По теории вы сейчас нас подтянете. Я хочу дослушать, что у нас по технологии.
К.З. С некоторой точки зрения, это может стать началом новой революции в спинтронике.
И ещё я хотел бы остановиться на методах изучения таких объектов. Спинтронные структуры обладают огромным количеством параметров. То есть экспериментальное их изучение - это очень трудоёмкий процесс, дорогостоящий, занимает много времени и так далее. И здесь на помощь приходит, как обычно сейчас, компьютерное моделирование. И очень активно используется в настоящее время так называемый микромагнитный подход.
Магнитный слой разбивается, грубо говоря, на кирпичики, на маленькие прямоугольники. И каждый из них обладает своим собственным магнитным моментом. И причём каждый из этих кирпичиков магнитостатически взаимодействует со всеми кирпичиками, которые формирует система. И модель позволяет варьировать и физические параметры, и геометрию. То есть из таких кирпичиков можем составлять любую магнитную структуру с необходимыми физическими свойствами. И мы можем моделировать реально процесс перемагничивания. Фактически мы строим виртуальный прототип элемента, подбираем оптимальные параметры. И только после этого образец подаётся уже в лабораторию.
А.Г. С неё начинают строительство непосредственно…
К.З. Да, то есть строится виртуальный прототип, изучается его поведение. Причём, что интересно, часто обнаруживаются некие новые эффекты, которые трудно предсказать теоретически. И их экспериментально было бы достаточно сложно обнаружить. И они вот таким образом обнаруживаются, и потом можно уже это экспериментально их получить.
Где ещё используются магнитные нано-структуры? Очень широко они используются в сенсорах всевозможных. Сейчас очень быстро развивается технология так называемая MEMS, то есть микромеханические системы, микроэлектромеханические системы. Это то, что мы видели в фантастических фильмах, это маленькие жучки, паучки, маленькие роботы каких-то миллиметровых размеров, которые используются во всех областях человеческой деятельности. И для управления точной механикой этих систем активно используются также магнитные сенсоры. Также такие сенсоры используются в автомобильной промышленности, очень активно, как датчики скорости, в медицине, в аэрокосмической области, то есть поле применения их очень широкое.
А.Г. Теперь подтяните нас по теории. Почему эти нано-мостики обладают таким потрясающим эффектом?
А.З. Вообще-то вопрос в стадии исследования. Но один из ответов, один из возможных ответов, может быть основан на эффекте квантового сопротивления нано-мостиков. Известно, что сопротивление нано-контакта квантуется, имеется квант сопротивления. И вот тогда, когда диаметр мостика меньше некоторого критического, то мостик практически закрыт. И мы можем его закрыть, скажем, сделав так, что спины в берегах мостика направлены навстречу друг другу. Тогда он закрыт. Полностью закрыт. Это квантовый эффект. Это, если хотите, бесконечное сопротивление. Когда мы делаем их параллельными, он открывается. То есть фактически он то закрыт, то открыт - это реальный факт. Значит, вопрос заключается в том, действительно ли он реализуется в тех экспериментах, которые сейчас сделаны. Здесь пока вопрос открыт.
К.З. Но сотни тысяч процентов наблюдались.
А.З. Это наблюдалось, да.
Мне хотелось бы сейчас действительно вернуться к физике. Вот в области магнитных нано-структур, в области суперпарамагнетизма имеется много интересных квантовых эффектов, где встречаются квантовые и классические закономерности, как мы сказали. И я, по ограниченности времени, конечно, могу говорить только об одном эффекте. Таким интересным эффектом является явление магнитной релаксации магнитных материалов. Давайте начнём с классики. Если мы возьмём обычный постоянный магнит, который мы в нашей обыденной жизни привыкли видеть, и намагнитим его вдоль определённого направления, например, вдоль лёгкой оси, то он практически постоянно будет находиться в этом состоянии равновесия. Хотя имеется другое состояние равновесия, противоположное ему.
Но ситуация меняется, когда мы уменьшаем размер элемента, объём элемента. Первым обратил на это внимание Луи Неель, знаменитый французский физик. Он изучал магнетизм земных пород и обратил внимание, что действительно, когда частички становятся маленькими, то они могут спонтанно размагничиваться, благодаря тепловым флуктуациям, как Костя нам об этом уже рассказал. И он вывел формулу для скорости спонтанного размагничивания, она выглядит как некая экспонента знаменитой формулы Аррениуса и показывает, что скорость спонтанного размагничивания, т.е. скорость релаксации, уменьшается, когда температура стремится к нулю, и она обращается в нуль, когда температура идёт в ноль. Но это с точки зрения здравого смысла это естественно. Тепловые флуктуации идут в ноль, и, значит, естественно, никакого перемагничивания спонтанного нет.
Когда начали делать эксперименты, обнаружили, что, в общем-то, всё укладывается хорошо в теорию Луи Нееля. Но когда начали экспериментировать с ещё более мелкими, нанометровыми частицами, обнаружили интересный факт. Оказалось, что действительно, она идёт по Неелю, но когда мы приходим к низким температурам, порядка Кельвина, оказывается, что скорость становится постоянной и при дальнейшем понижении температуры не меняется. Это удивительный факт. Довольно быстро была выдвинута идея, что здесь мы имеем дело с макроскопическим квантовым туннелированием намагниченности частицы.
А.Г. Макроскопическим?
А.З. Да, магнитный момент всей частицы, макроскопический, он туннелирует как целое. Это напоминает, помните, кота Шрёдингера. Так вот эта частица, этот магнитный момент как целое, он переходит в другое состояние. Удивительный факт.
А.Г. То есть этот туннельный эффект, по сути дела - макроскопический?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


А-П

П-Я