https://wodolei.ru/catalog/smesiteli/dlya_vanny/
А. же быстро превзошел своих предшественников и первый установил верные принципы статики и особенно – гидростатики. Статика А. основана на идее центра тяжести, впервые им высказанной и при том так уверенно, что он мог сказать однажды: «Дайте мне точку опоры, и я подниму земной шар». Что касается открытий А. по гидростатике, то передают следующие обстоятельства, вызвавшие бессмертный принцип А. : «Всякое тело при погружении в жидкость теряет в своем весе столько, сколько весит вытесненная им жидкость». Гиерон, царь сиракузский, подозревая своего ювелира в обмане при выделки золотой короны, поручил своему родственнику А. открыть обман и доказать, что в корону примешано серебра больше, чем следовало. Долго безуспешно трудился А. над решением предложенной задачи, пока наконец случайно во время купания открыл основной гидростатический закон и пришел от своего открытия в такой восторг, что голый с криками «eurhka» (я нашел !) побежал из купальни домой, чтобы испробовать свою теорию, которая так прекрасно впоследствии подтвердилась. В древности Архимеду приписывали до 40 открытий в области практической механики, но не все они описаны его биографами и комментаторами, так что некоторые известны лишь по названию, как то: архимедов рычаг, полиспаст и др. Архимедов винт применил он, будучи в Египте, к осушке залитых Нилом местностей. Укажем также на изобретенный А. планетарий – прибор, который с наглядностью показывал движение небесных тел. Не менее замечательно, что А. знал про силу водяных паров и пытался применить ее к орудиям своего века, так наз. метательным снарядам. Римляне, под предводительством консула Марцелла, осаждали во время второй Пунической войны (212 г. до Р. Х.) родину А. – Сиракузы. Посвятив себя защите Сиракуз, А. стал душой самого упорного и вместе с тем самого искусного сопротивления, о котором говорит история. Он построил метательные снаряды, причинившие много вреда римскому войску. Историки Полибий, Ливий и Плутарх, описавшие эту редкую по выдержанности осаду, повествуют, что А. построил также громадные «зажигательные стёкла» (двояковыпуклые чечевицы), посредством которых сжег римский флот. Тем не менее, А. не мог спасти свою родину от печальной участи: римляне вторглись в город. Солдаты, предававшиеся грабежу, не пропустили и дома Архимеда; который в это время сидел на полу, посыпанном песком, на котором чертил свои геометрические фигуры. А. встретил победителей классическими словами: «Не трогай моих фигур!» (Noli turbare circulos meos!), но варвар не пощадил старца и умертвил его на месте. Так кончил свою плодотворную деятельность А. на 75 году жизни, окруженный двойным ореолом славы, приобретенной наукой и редким патриотизмом. На его могилу поставили цилиндр, с включенным (вписанным) в него шаром, чтобы этим увековечить его открытие взаимного отношения шара и цилиндра, которому он придавал особое значение. Цицерон, будучи квестором Сицилии, отыскал этот памятник, скрытый в кусте. Оставшиеся после него сочинения собрал Торелли (Оксфорд, 1792 г.), Гейберг (Лейпциг, 1680 г.). Они были переведены и объяснены Ницце (Штральзунд, 1824). Отдельные сочинения его переведены Гаубером (Тюбинген, 1798 г.), Гофманом (Ашафенб., 1817 г.), Крюгером (Кведлинб. и Лейпциг, 1820 г.) и Гутенекером (Вюрцбург, 1828 г.). Ср. Гейберг, «Quaestiones Archimedeae» (Копенгаген, 1879 г.).
Архимеда закон
Архимеда закон – так наз. открытый Архимедом важный гидростатический закон, согласно которому каждое тело, погруженное в жидкость, теряет столько своего веса, сколько весит вытесненная им жидкость. Этот закон основан на гидростатическом давлении, вследствие которого тело, погруженное в жидкость. поднимается с действующей отвесно вверх силой, равной весу вытесненной им жидкости. Для доказательства Архимедова закона на опыте служат гидростатические весы, т.е. совершенно равноплечие весы, которые дают возможность взвешивать тела, погруженные в воду или в любую жидкость. На этих весах одна чашка повешена короче другой, но вес обеих чашек с подвесками одинаков; к более короткой чашке подвешивают два металлических цилиндра: один полый, а другой под ним массивный (последний такой величины, что он совершенно плотно входит в полый). Приведя тарированием весы в равновесие, погружают массивный цилиндр в воду. Чашка весов, к которой подвешены цилиндры, поднимается, но стоит только налить в пустой цилиндр до верху воды, весы возвращаются опять в равновесие. Этим доказывается истинность Архимедова закона, который применяется для объяснения пассивного плавания, равно как действия воздушного шара; на основании этого закона производится также определение плотности (удельного веса тела) с помощью гидростатических весов и ареометра.
Архитектоника
Архитектоника (греч.) – теория архитектуры и строительного искусства. Выражение это в настоящее время употребляется редко и большей частью заменяется словом «архитектура».
Архитрав
Архитрав или эпистелион (греч.). – Слово это в архитектуре имеет троякое значение: во 1-х, архитравом или архитравным покрытием называется вообще всякая прямолинейная перекладина, перекрывающая промежуток между колоннами, столбами или косяками (в окнах и дверях); во 2-х, нижняя часть антаблемента, непосредственно опирающаяся на капители колонны; в Тосканском и Дорическом орденах А. делается простой, гладкий, а в Ионическом и Коринфском – разделённый горизонтально на три части; и в 3-х, один вид изразцов, употребляемых на облицовку голландских печей.
Асенковы
Асенковы – семейство известных актрис, из которых наиболее выдающейся была Варвара Николаевна. Ее мать Александра Егоровна, род. 1796 г., воспитывалась в театральном училище, уч. кн. А.А. Шаховского; дебютировала в 1814 г. у императрицы Марии Фёдоровны в одноактной комедии «Марфа и Угар» (роль Марфы) и имела успех. По свидетельству современников, А.Е. была пленительна, играла кокеток и служанок в высокой комедии, а также роли старых дев, сварливых старух и бойких барынь в комедии и водевиле; особенно была неподражаема в ролях субреток (Дорина в «Тартюфе», Сусанна в «Свадьбе Фигаро»), умерла в 1860-х годах.
Ее дочь, Варвара Николаевна, служила украшением драматической сцены в период высшего расцвета отечественного сценического искусства, период, когда впервые были поставлены «Ревизор» и «Жизнь за царя». В.Н. род. 1 апреля 1817 года; мать отдала ее в театральное училище, откуда она была, как и из пансиона, исключена за неспособность. Избрать для дочери другую карьеру было невозможно и Александра Егоровна обратилась к известному артисту И.И. Сосницкому, умоляя его взять дочь для приготовления к сцене. Дебютировала В.Н. в бенефисе Сосницкого 25-го января 1835 в старинной комедии Фавара: «Солиман II или три султанши», в роли бойкой Роксаны – одалиски, пленившей султана. В.Н. пленила зрителей; ее красота, ловкость, прекрасная мимика, изящные манеры, приятный голос – все в ней восторгало своей необычайностью. Исполняя первые и трудные роли любовниц в драмах, комедиях и водевилях, она постоянно была любимицею публики. В.Н. нравились роли мальчиков и с переодеванием (roles de travestissement), в которых она была удивительно ловка и мила своей игривостью. Играя очень часто, любя веселье, праздники, удовольствия всякого рода, молодая актриса не берегла себя. Слабое здоровье В.Н. не выдержало сценических трудов, оваций и поклонников и после 6-ти лет сценической деятельности (умерла 15 апреля 1841 г.), преждевременно сошла в могилу, не устояв против сильной чахотки. Похоронена на Смоленском кладбище, близ церкви; на могиле ее сооружен по подписке красивый памятник.
Асимптота
Асимптота (от греч. слов: a, sun, piptw) – несовпадающая. Под асимптотой подразумевается такая линия, которая, будучи неопределенно продолжена, приближается к данной кривой линии или к некоторой ее части так, что расстояние между общими линиями делается менее всякой данной величины; иначе говоря, А. касается данной кривой линии на бесконечном расстоянии от начала координат. Всякая другая линия, параллельная А., хотя и приближается непрестанно к кривой, однако не может быть названа в свою очередь А., так как расстояние ее от кривой не может быть уменьшено по произволению. Таким образом, число А. для каждой кривой вполне ограничено. С тех пор как греческие геометры стали исследовать свойство кривых линий, образующихся на поверхности конуса от пересечения его плоскостью, стало известным, что ветви гиперболы, будучи неопределенно продолжены, непрестанно сближаются с двумя прямыми линиями, исходящими из центра гиперболы и одинаково наклоненными к её оси. Эти прямые, о которых упоминает уже Архимед, были еще в древности названы А. и сохранили свое название и по настоящее время. Впоследствии Ньютон показал, что существуют криволинейные А. не только в кривых трансцендентных, но даже в алгебраических, начиная с 3 порядка последних. Действительно, ныне различают А. прямолинейные и криволинейные; но, обыкновенно, прямолинейной А. присваивают название Асимп., называя криволинейную – асимптотической кривой. Основываясь на вышеприведенном определении, что прямолинейная А. есть касательная к кривой в точке, бесконечно удаленной от начала координат, легко найти уравнение А. данной кривой. В самом деле, пусть y=f(x) есть уравнение кривой линии; уравнение касательной ее в точке, определенной координатами х и у, будет, как известно, или .
Чтобы перейти от касательной к А., стоит сделать одно из следующих предположений: 1) х и у =+? , 2) x=+?, а у=конечному числу и 3) у= +?, а х=конечному числу, так как этими предположениями мы выражаем, что точка касания находится на бесконечном расстоянии от начала координат. Так, для гиперболы, определяемой уравнением , находим Полагая х =?, найдем ; следовательно уравнение А. рассматриваемой гиперболы будет или, что все равно, ; последние два уравнения показывают, что гипербола имеет две А. Можно также определить А. следующим образом. Пусть будет Y А. =Х+В уравнение А., непараллельной оси у. Ордината у кривой, соответствующая абсциссе х, для весьма больших величин сей абсциссы, будет очень мало разниться от ординаты Y а-ты; так что можно ее принять у=Ах+В+e , подразумевая под e количество, уничтожающееся вместе с I/x. Итак, полагая х=? , найдем , и пред. (у – Ах)= пред. (В+e)=В. Следовательно, для определения постоянного количества стоит только в уравнении кривой положить или y=xq и найти предел, к которому стремится q для бесконечно больших значений х. Величина В определится, если в уравнении кривой примем у – Ах = n, или y = Ax + n. Изменив х на у и наоборот, и рассуждая также, как и выше, найдем А., непараллельные оси х. Так, например, уравнение рассмотренной нами гиперболы, через подстановку qx вместо у, дает или полагая х =?, найдём , или Полагая в том же уравнении получим или , где, полагая х=?, получим n=0=B; следовательно, уравнение А. предложенной гиперболы будет, как и выше, , что и требовалось доказать. бесчисленное множество кривых имеет А.; укажем, кроме упомянутой уже гиперболы, следующие кривые, имеющие А.: конхоида, логарифмическая линия, циссоида, декартов лист и др.
Пример асимптотической кривой усматриваем в кривой 3-го порядка, определяемой уравнением y=х2 + I/х. Очевидно, что по мере увеличения абсциссы х в положительную или отрицательную сторону, член I/x будет неопределенно уменьшаться, а х2 увеличиваться, так что ордината у будет приближаться все более и более к значению х2, которого однако никогда не достигает. Отсюда ясно, что рассматриваемая нами кривая имеет А-ской кривой параболу, определяемую уравнением у=х2 Для весьма малых положительных или отрицательных значений абсциссы х случится обратное положение: численная величина дроби I/x неопределённо возрастает, а х2 напротив того, уменьшается, так что ордината у будет стремиться к равенству с I/x ; таким образом, равностороння гипербола, отнесенная в своим асимптотам, будет также А-ою предложенной кривой.
Асимптота поверхности
Асимптота поверхности называется прямая линия, пересекающая поверхность по крайней мере в двух бесконечно удаленных точках.
Асимптотическая плоскость
Асимптотическая плоскость – плоскость, касающаяся данной поверхности в бесконечно удаленной точке, но не лежащая вся в бесконечности.
Асимптотическая поверхность
Асимптотическая поверхность – поверхность, обертывающая асимптотические плоскости к некоторой поверхности. Всякая поверхность имеет, вообще говоря, бесконечно. большое число бесконечно удаленных точек, а именно все точки пересечения ее с бесконечно удаленною плоскостью, совокупность которых составляет бесконечно-удаленную кривую, лежащую на данной поверхности. Всякой точке этой кривой соответствует одна А., так что поверхность имеет бесконечное число А., вещественных или мнимых. Так как в тоже время во всякой точке можно провести к поверхности касательную плоскость, то поверхность имеет и бесконечное число асимптотических плоскостей, вещественных или мнимых. Всякая такая плоскость заключает в себе бесконечное число А., а так как все эти А. пересекают поверхность в одной и той же бесконечно удаленной точке, то они между собой параллельны. А.-ческая поверхность очевидно линейчатая поверхность. Пусть уравнение данной поверхности есть F(x, у, z)=0 и пусть х – n/l = у – h/m = z – z/n есть уравнение одной из А. Расположим F по однородным функциям n-го, n-1-го и т.д. измерений: F=jn + jn-1 +...+ j1 + j0 Точки пересечения А. и поверхности суть корни уравнения F(x+lr, h+mr, z+nr)= 0. Назовем через D операцию тогда будет, если jn , jn-1 ... означают функции от l,m,n rnjn+ rn-1j1-n (Djn + jn-1) +(1/2)rn-2D2jn (Djn-1 +jn-2)+...=0
Простая A. получится, если два корня этого уравнения обратятся в бесконечность, т. е. если jn = 0 и Djn +jn-1 =0. Уравнения эти показывают, что все асимптоты параллельны производящей конической поверхности jn(х, у, z)=0 и что все А. параллельные одной из производящих этого конуса лежать в одной плоскости параллельной плоскости касательной в конусу с соответствующей производящей.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
Архимеда закон
Архимеда закон – так наз. открытый Архимедом важный гидростатический закон, согласно которому каждое тело, погруженное в жидкость, теряет столько своего веса, сколько весит вытесненная им жидкость. Этот закон основан на гидростатическом давлении, вследствие которого тело, погруженное в жидкость. поднимается с действующей отвесно вверх силой, равной весу вытесненной им жидкости. Для доказательства Архимедова закона на опыте служат гидростатические весы, т.е. совершенно равноплечие весы, которые дают возможность взвешивать тела, погруженные в воду или в любую жидкость. На этих весах одна чашка повешена короче другой, но вес обеих чашек с подвесками одинаков; к более короткой чашке подвешивают два металлических цилиндра: один полый, а другой под ним массивный (последний такой величины, что он совершенно плотно входит в полый). Приведя тарированием весы в равновесие, погружают массивный цилиндр в воду. Чашка весов, к которой подвешены цилиндры, поднимается, но стоит только налить в пустой цилиндр до верху воды, весы возвращаются опять в равновесие. Этим доказывается истинность Архимедова закона, который применяется для объяснения пассивного плавания, равно как действия воздушного шара; на основании этого закона производится также определение плотности (удельного веса тела) с помощью гидростатических весов и ареометра.
Архитектоника
Архитектоника (греч.) – теория архитектуры и строительного искусства. Выражение это в настоящее время употребляется редко и большей частью заменяется словом «архитектура».
Архитрав
Архитрав или эпистелион (греч.). – Слово это в архитектуре имеет троякое значение: во 1-х, архитравом или архитравным покрытием называется вообще всякая прямолинейная перекладина, перекрывающая промежуток между колоннами, столбами или косяками (в окнах и дверях); во 2-х, нижняя часть антаблемента, непосредственно опирающаяся на капители колонны; в Тосканском и Дорическом орденах А. делается простой, гладкий, а в Ионическом и Коринфском – разделённый горизонтально на три части; и в 3-х, один вид изразцов, употребляемых на облицовку голландских печей.
Асенковы
Асенковы – семейство известных актрис, из которых наиболее выдающейся была Варвара Николаевна. Ее мать Александра Егоровна, род. 1796 г., воспитывалась в театральном училище, уч. кн. А.А. Шаховского; дебютировала в 1814 г. у императрицы Марии Фёдоровны в одноактной комедии «Марфа и Угар» (роль Марфы) и имела успех. По свидетельству современников, А.Е. была пленительна, играла кокеток и служанок в высокой комедии, а также роли старых дев, сварливых старух и бойких барынь в комедии и водевиле; особенно была неподражаема в ролях субреток (Дорина в «Тартюфе», Сусанна в «Свадьбе Фигаро»), умерла в 1860-х годах.
Ее дочь, Варвара Николаевна, служила украшением драматической сцены в период высшего расцвета отечественного сценического искусства, период, когда впервые были поставлены «Ревизор» и «Жизнь за царя». В.Н. род. 1 апреля 1817 года; мать отдала ее в театральное училище, откуда она была, как и из пансиона, исключена за неспособность. Избрать для дочери другую карьеру было невозможно и Александра Егоровна обратилась к известному артисту И.И. Сосницкому, умоляя его взять дочь для приготовления к сцене. Дебютировала В.Н. в бенефисе Сосницкого 25-го января 1835 в старинной комедии Фавара: «Солиман II или три султанши», в роли бойкой Роксаны – одалиски, пленившей султана. В.Н. пленила зрителей; ее красота, ловкость, прекрасная мимика, изящные манеры, приятный голос – все в ней восторгало своей необычайностью. Исполняя первые и трудные роли любовниц в драмах, комедиях и водевилях, она постоянно была любимицею публики. В.Н. нравились роли мальчиков и с переодеванием (roles de travestissement), в которых она была удивительно ловка и мила своей игривостью. Играя очень часто, любя веселье, праздники, удовольствия всякого рода, молодая актриса не берегла себя. Слабое здоровье В.Н. не выдержало сценических трудов, оваций и поклонников и после 6-ти лет сценической деятельности (умерла 15 апреля 1841 г.), преждевременно сошла в могилу, не устояв против сильной чахотки. Похоронена на Смоленском кладбище, близ церкви; на могиле ее сооружен по подписке красивый памятник.
Асимптота
Асимптота (от греч. слов: a, sun, piptw) – несовпадающая. Под асимптотой подразумевается такая линия, которая, будучи неопределенно продолжена, приближается к данной кривой линии или к некоторой ее части так, что расстояние между общими линиями делается менее всякой данной величины; иначе говоря, А. касается данной кривой линии на бесконечном расстоянии от начала координат. Всякая другая линия, параллельная А., хотя и приближается непрестанно к кривой, однако не может быть названа в свою очередь А., так как расстояние ее от кривой не может быть уменьшено по произволению. Таким образом, число А. для каждой кривой вполне ограничено. С тех пор как греческие геометры стали исследовать свойство кривых линий, образующихся на поверхности конуса от пересечения его плоскостью, стало известным, что ветви гиперболы, будучи неопределенно продолжены, непрестанно сближаются с двумя прямыми линиями, исходящими из центра гиперболы и одинаково наклоненными к её оси. Эти прямые, о которых упоминает уже Архимед, были еще в древности названы А. и сохранили свое название и по настоящее время. Впоследствии Ньютон показал, что существуют криволинейные А. не только в кривых трансцендентных, но даже в алгебраических, начиная с 3 порядка последних. Действительно, ныне различают А. прямолинейные и криволинейные; но, обыкновенно, прямолинейной А. присваивают название Асимп., называя криволинейную – асимптотической кривой. Основываясь на вышеприведенном определении, что прямолинейная А. есть касательная к кривой в точке, бесконечно удаленной от начала координат, легко найти уравнение А. данной кривой. В самом деле, пусть y=f(x) есть уравнение кривой линии; уравнение касательной ее в точке, определенной координатами х и у, будет, как известно, или .
Чтобы перейти от касательной к А., стоит сделать одно из следующих предположений: 1) х и у =+? , 2) x=+?, а у=конечному числу и 3) у= +?, а х=конечному числу, так как этими предположениями мы выражаем, что точка касания находится на бесконечном расстоянии от начала координат. Так, для гиперболы, определяемой уравнением , находим Полагая х =?, найдем ; следовательно уравнение А. рассматриваемой гиперболы будет или, что все равно, ; последние два уравнения показывают, что гипербола имеет две А. Можно также определить А. следующим образом. Пусть будет Y А. =Х+В уравнение А., непараллельной оси у. Ордината у кривой, соответствующая абсциссе х, для весьма больших величин сей абсциссы, будет очень мало разниться от ординаты Y а-ты; так что можно ее принять у=Ах+В+e , подразумевая под e количество, уничтожающееся вместе с I/x. Итак, полагая х=? , найдем , и пред. (у – Ах)= пред. (В+e)=В. Следовательно, для определения постоянного количества стоит только в уравнении кривой положить или y=xq и найти предел, к которому стремится q для бесконечно больших значений х. Величина В определится, если в уравнении кривой примем у – Ах = n, или y = Ax + n. Изменив х на у и наоборот, и рассуждая также, как и выше, найдем А., непараллельные оси х. Так, например, уравнение рассмотренной нами гиперболы, через подстановку qx вместо у, дает или полагая х =?, найдём , или Полагая в том же уравнении получим или , где, полагая х=?, получим n=0=B; следовательно, уравнение А. предложенной гиперболы будет, как и выше, , что и требовалось доказать. бесчисленное множество кривых имеет А.; укажем, кроме упомянутой уже гиперболы, следующие кривые, имеющие А.: конхоида, логарифмическая линия, циссоида, декартов лист и др.
Пример асимптотической кривой усматриваем в кривой 3-го порядка, определяемой уравнением y=х2 + I/х. Очевидно, что по мере увеличения абсциссы х в положительную или отрицательную сторону, член I/x будет неопределенно уменьшаться, а х2 увеличиваться, так что ордината у будет приближаться все более и более к значению х2, которого однако никогда не достигает. Отсюда ясно, что рассматриваемая нами кривая имеет А-ской кривой параболу, определяемую уравнением у=х2 Для весьма малых положительных или отрицательных значений абсциссы х случится обратное положение: численная величина дроби I/x неопределённо возрастает, а х2 напротив того, уменьшается, так что ордината у будет стремиться к равенству с I/x ; таким образом, равностороння гипербола, отнесенная в своим асимптотам, будет также А-ою предложенной кривой.
Асимптота поверхности
Асимптота поверхности называется прямая линия, пересекающая поверхность по крайней мере в двух бесконечно удаленных точках.
Асимптотическая плоскость
Асимптотическая плоскость – плоскость, касающаяся данной поверхности в бесконечно удаленной точке, но не лежащая вся в бесконечности.
Асимптотическая поверхность
Асимптотическая поверхность – поверхность, обертывающая асимптотические плоскости к некоторой поверхности. Всякая поверхность имеет, вообще говоря, бесконечно. большое число бесконечно удаленных точек, а именно все точки пересечения ее с бесконечно удаленною плоскостью, совокупность которых составляет бесконечно-удаленную кривую, лежащую на данной поверхности. Всякой точке этой кривой соответствует одна А., так что поверхность имеет бесконечное число А., вещественных или мнимых. Так как в тоже время во всякой точке можно провести к поверхности касательную плоскость, то поверхность имеет и бесконечное число асимптотических плоскостей, вещественных или мнимых. Всякая такая плоскость заключает в себе бесконечное число А., а так как все эти А. пересекают поверхность в одной и той же бесконечно удаленной точке, то они между собой параллельны. А.-ческая поверхность очевидно линейчатая поверхность. Пусть уравнение данной поверхности есть F(x, у, z)=0 и пусть х – n/l = у – h/m = z – z/n есть уравнение одной из А. Расположим F по однородным функциям n-го, n-1-го и т.д. измерений: F=jn + jn-1 +...+ j1 + j0 Точки пересечения А. и поверхности суть корни уравнения F(x+lr, h+mr, z+nr)= 0. Назовем через D операцию тогда будет, если jn , jn-1 ... означают функции от l,m,n rnjn+ rn-1j1-n (Djn + jn-1) +(1/2)rn-2D2jn (Djn-1 +jn-2)+...=0
Простая A. получится, если два корня этого уравнения обратятся в бесконечность, т. е. если jn = 0 и Djn +jn-1 =0. Уравнения эти показывают, что все асимптоты параллельны производящей конической поверхности jn(х, у, z)=0 и что все А. параллельные одной из производящих этого конуса лежать в одной плоскости параллельной плоскости касательной в конусу с соответствующей производящей.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109