В каталоге сайт Wodolei
Пастер, безусловно, внесли свою долю в дарвиновское эволюционное учение, хотя и не признавали его.
«Я НЕ СЛЫШАЛ, ЧТО ВЫ СКАЗАЛИ. НО Я СОВЕРШЕННО С ВАМИ НЕ СОГЛАСЕН»
К сожалению, выступления одного ученого против другого осложнены порой тяжелыми психоло!ическими травмами. Конечно, такой исход необязательно сопровождает их научную полемику. Более того, известны случаи не просто терпимых, но и близких, даже дружественных отношений между исследователями, стоящими на противоположных позициях. Не откажем в удовольствии предъявить читателю некоторые из подобных фактов.
Обратимся снова к Ч. Дарвину. В числе других его теорию не признавал также известный французский зоолог Ж— Фабр — личность вообще интересная, и мы еще вернемся к нему. Его критика дарвинизма нередко достигала высокого накала. Однако выдающиеся ученые оставались друзьями, ценили друг друга и не только за чисто человеческие качества. Ж. Фабр, например, отмечал в Ч. Дарвине «поразительную преданность науке», с восхищением отзывался о его неутомимой работе.
В свою очередь, и Ч. Дарвин отдавал должное таланту своего друга. Более того, видел в его исследованиях поддержку своим идеям. Он писал Ж. Фабру: «Не думаю, чтобы в Европе нашелся кто-нибудь, кого Ваши работы интересуют больше, чем меня».
Длительная, временами острая полемика между дарвинистом Т. Гексли и его постоянным оппонентом Д. Уордом не ожесточила, однако, их. Несмотря на колкости, которыми они порой сопровождали свои споры, оба англичанина оставались джентльменами, были взаимно доброжелательны, исполнены искреннего расположения. Оценивая их отношения, писатель У. Ирвин в книге «Дарвин и Гексли» отмечает даже, что Т. Гексли и Д. Уорд «научились воевать с удивительной приязнью друг к другу, поднявшись над жестокой враждой и полным несходством взглядов до веселой и даже задушевной товарищеской близости».
К сожалению, чаще драма идей сопровождается драмой людей, когда неприятие взглядов порождает реакцию «эмоционального вытеснения» таланта талантом.
Отношения обостряются настолько, что нередко враждующая сторона заведомо, даже не пожелав вникнуть в существо развиваемой позиции, отвергает ее. Получается вроде следующего: «Я не слышал, что вы сказали, но я с вами совершенно не согласен».
Этот остроумный афоризм годится, чтобы характеризовать отношение, которое поначалу питал выдающийся немецкий физик конца XIX века Г. Герц к столь же выдающемуся английскому коллеге Д. Максвеллу. Предметом расхождения явилась электромагнитная теория.
Вообще, это детище Д. Максвелла вызывало сильнейшее противодействие. Мы уже рассказывали, как сопротивлялся теории В. Томсон. Ее выводы не признал также известный французский физик того времени П. Дюгем. К числу непринявших присоединился и крупнейший немецкий естествоиспытатель Г. Гельмгольц, а уже вслед за ним — его ученик Г. Герц.
Со стороны немецких исследователей возражения касались вопроса передачи взаимодействий. Оба они разделяли позицию дальнодействия, то есть передачи сигналов без посредников и мгновенно в силу особых, никому не известных пока свойств материи. Д. Максвелл же опирался на допущение промежуточной среды, в которой электрические и магнитные явления распространяются с конечной скоростью, равной скорости света.
Г. Герц ставит серию опытов, чтобы опровергнуть Д. Максвелла, но опровергает… Г. Гельмгольца, следуют новые опыты, а результат тот же. Г. Герц даже пытается одно время уйти от этих проблем, заняться другими. По не тут-то было! «Электромагнитная тема» влечет его, более того, выводит на работы Д. Максвелла. Словом, все это закончилось тем, что, «поймав» электромагнитною волну, которая оставалась до этого лишь предположением, Г. Герц стал виновником торжества оспариваемых им ранее идей.
«Эмоцией вытеснения» исполнены отношения многих других ученых. Например, И. Ньютона и Г. Лейбница, французских математиков конца XVIII — начала XIX века Л. Пуансо и О. Кошн. Г. Галилей полностью игнорировал законы движения планет, установленные в начале XVII века известным немецким ученым И. Кеплером. Хотя он знал об открытии и даже одно время переписывался с И. Кеплером, Г. Галилей в своих работах нигде не упоминает о законах, а рассуждения ведет так, словно их никогда и не было.
Взаимные связи между исследователями отмечены и такими моментами.
Изобретатель паровой машины Д. Уатт на пути к признанию своего результата встретил груду препятствий, чинимых недоброжелателями. Дело в том, что Д. Уатт добивался создания паровой машины не просто как механизма, годного лишь для особых целей, скажем, для откачки воды в качестве насоса или для использования только в текстильной промышленности и т. п. Он намеревался построить универсальный двигатель современного ему производства. В конце концов он достиг этого. Но было на его пути немало неудач.
К примеру, крупным провалом отмечен 1769 год, когда изобретатель собрал и задумал испытать паровую установку с отделенным конденсатором. Не вышло.
Этим сразу же воспользовались соперники, чтобы очернить идею Д. Уатта. Так же и в других случаях ему приходилось в трудных условиях отстаивать свои замыслы.
А вместе с тем и сам-то он, можно сказать, не остался в долгу. Когда его соотечественник Р. Тревитик создал паровую машину высокого давления, Д. Уатт развил завидную энергию, выступая против. Он доказывал, будто подобные остановки наносят вред прогрессу паровой техники, и выражался даже в том смысле, что Р. Тревитика… мало повесить.
В свое время Т. Эдисона часто травили и высмеивали как мошенника, препятствуя внедрению его открытий. Притом чем более оригинальным было изобретение, тем изобретательнее действовали критики.
Но странное дело. Ведь и сам Т. Эдисон в ряде случаев оказал своим высоким авторитетом сопротивление ценным научно-техническим идеям.
В 1867 году по дну Атлантического океана прокладывали телеграфный кабель, связывающий Европу и Америку. Великий изобретатель поспешил со следующим заявлением, которое было опубликовано в газетах: «Из этой затеи ничего не получится». И пояснял, что ток, проходя столь большие расстояния, не способен будет переносить сигнал без значительных искажений.
Правда, когда трансатлантический телеграф между континентами стал успешно действовать, Т. Эдисон тут же признал свою ошибку.
Столь же неоправданную поспешность допустил он и по поводу еще одного выдающегося изобретения.
В 1928 году советская пресса сообщила о создании в России С. Лебедевым искусственного синтетического каучука (СК). Т. Эдисон откликнулся на это так:
«Известие о том, — писал он, — что Советскому Союзу удалось получить синтетический каучук, невероятно.
Этого никак нельзя сделать. Скажу больше — все сообщение ложь».
Впрочем, такая реакция лишь рельефнее оттеняет значение открытия, сделанного С. Лебедевым. Он действительно превысил «полномочия» науки того времени, пройдя через невозможное.
Мы привлекли факты, повествующие о выступлениях ученых против своих коллег, против истин, создаваемых другими. Но верхом парадоксальности оказывается положение, когда исследователь опровергает… самого себя, воюет с собственными результатами.
Почему это происходит?
Каждая принципиально новая теория, несущая новую парадигму, бесспорно, выходит за рамки привычного опыта, порывая с теми представлениями, которые он питал. Но все, что не согласуется с опытными данными, воспринимается как парадокс. И не только другими, а поначалу даже нередко и автором новой теории.
Так, мысль о вращении Земли казалась на первых порах самому Н. Копернику (о других уже и говорить нечего) неправдоподобной. Известные сомнения испытал, выдвигая принципы своей механики, И. Ньютон.
Считал ее «подозрительной». Уже создав основы дифференцнального исчисления, он остался в плену у старою. Великий ученый предпочитал выражать свои физические и астрономические воззрения архаическим языком, используя понятия, введенные еще греками. Не случайно же о И. Ньютоне говорили, что он скорее был не первым представителем века разума, а «последним из вавилонян и египтян», ибо смотрел на мир теми же, что и они, глазами.
Острую борьбу и прежде всего с самим собой пережил И. Кеплер, который пришел к выводу, что планеты движутся вовсе не по круговым орбитам, как полагали со времен древних, а по эллипсам. Это было совершенно неприемлемое допущение, идущее вразрез с вековой традицией.
Хотя И. Кеплер сделал вывод на основе совершенно точных наблюдений за движением Марса, полученных Т. Браге, ученый не смог перешагнуть барьера парадигмы. Его взгляды оставались некоторое время сугубо средневековыми. И только позднее, после упорных лет борьбы со своими убеждениями, великий ученый окончательно принял идею эллиптической формы движения планет. Таким образом, лишь пробивши брешь в собственном сознании, он смог повлиять на сознание других.
Как мы убеждаемся, прокладывать путь к новому мешает порой наше внутреннее сопротивление. «Я вижу это, но не верю этому» — так характеризовал свое состояние Г. Кантор (мы писали о нем), когда получил некоторые странные следствия из аксиом своей теории множеств. В письме известному немецкому математику XIX века Р. Дедекинду он признавался, что пришел к этим результатам вопреки собственной воле и лишь потому, что навязывают логика и 25-летний труд.
Видимо, и в самом деле бороться и искать, отвергать добытое и экспериментировать, отступать и находить новое нам мешает единственная могучая сила — это… мы сами. Хочется испытанных, нормальных дорог.
Потому нехоженые дали часто отпугивают. Вот и получается, что, смело заглянув в неизведанные пространства, люди отступают, пораженные величием увиденного. Наверное, первооткрыватели больше всего и страдают, добывая повое. Им не на кою оглянуться, и в себе не всегда сразу находят они уверенную опору.
«ЛОМКА СОЗНАНИЯ»
Характерны обстоятельства, сопровождавшие рождение и утверждение квантовой механики.
Она описывает движение микрочастиц, то есть частиц малой массы, обладающих специфическими свойствами. Что и говорить, необычная теория. Пришлось отказаться от многих самоочевидных и, казалось, незыблемых представлений.
Ранее мы уже немного касались этого вопроса в связи с опытами по интерференции. Отметим также, что в микромире теряют смысл рассуждения о траектории частиц. Это понятие применительно к обычным явлениям выражает наличие у тела одновременного определенного импульса или количества движения, равного произведению массы тела на скорость, и определенной координаты, то есть положения в пространстве. Но в микровселенной свои порядки. Здесь знать одновременно и импульс и координату частицы оказывается невозможным. И вот почему.
Допустим, мы решили установить положение микрочастицы в пространстве. Для этого нужно направить на нее луч света. Однако световой поток придает нашей частице такое количество движения, такие возмущения, что совершенно изменит ее местонахождение. Поэтому и не представляется возможным одновременно знать местоположение микрообъекта и его импульс. А чтобы описывать поведение микрочастиц, было введено так называемое соотношение неопределенностей, согласно которому произведение неопределенностей координаты частицы и ее импульса не может быть меньше некой постоянной величины (постоянной Планка).
Словом, открылся особый, доселе невиданный мир странных явлений. Он не поддавался объяснению в понятиях господствовавших в ту пору парадигм. Квантовую механику, пытавшуюся ввести новые понятия, одни называли учением с темным прошлым, напоминающим богословие, другие восторженно приветствовали как появление «пикассо-физнки», третьи ждали, что из этого выйдет.
Первые всходы новой теории дали посевы, произведенные еще М. Планком и А. Эйнштейном в самом начале нашего столетия. Исходным пунктом всей квантовой концепции явилась развитая ими квантовая теория света. Но здесь придется сделать небольшое отступление.
Еще в XIX веке в физике стала признанной идея волновой природы света, победившая корпускулярную точку зрения Сторонники последней (и самый авторитетный среди них И. Ньютон) считали, что свет — поток материальных частиц, или корпускул, и имеет прерывный, дискретный характер. Победившая же ее волновая теория представляла свет в виде волн и только волн, которые распространяются непрерывно. Для пояснения этого взгляда на помощь обычно привлекали образ колеблющейся воды, когда она разбегается от места, куда брошен, например, камень.
Однако к началу XX века обнаружились факты, указывающие на несоответствие между законом непрерывного распространения энергии, в частности, световой, и наличным опытом. Разразилась так называемая «ультрафиолетовая катастрофа». Она и образовала одну из тех тучек, что застилали, по выражению В. Томсона, ясный горизонт физического знания.
И вот в 1900 году М. Планк выдвигает совершенно невероятную, парадоксальную гипотезу. Все же он не внял совету своего учителя Ф. Жолли и занялся теоретической физикой. М. Планк предложил идею «зернистого» распределения энергии. Он пришел к выводу, что электромагнитная энергия, носителем которой является свет, излучается и поглощается атомами не непрерывно, а только строго определенными дозами, квантами.
Квант — это минимальная, неделимая порция энергии.
В шутку говорили, что теперь согласно новым представлениям энергия отпускается лишь целыми единицами, совсем как в отделе штучных товаров.
Это коренным образом переворачивало устоявшиеся представления. По выражению известного советского ученого Л. Ландау, М. Планк ввел в физику алогичность.
Однако далось такое решение естествоиспытателю нелегко. Ввести-то он новые понятия ввел, зато потом всю жизнь терзался этим. Когда М. Планк увидел, что квант рушит закон непрерывности излучения и поглощения света, внося дискретность, прерывность, а еще более, когда понял, что его квант вообще подрывает классические устои, ученый самым настоящим образом встревожился.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
«Я НЕ СЛЫШАЛ, ЧТО ВЫ СКАЗАЛИ. НО Я СОВЕРШЕННО С ВАМИ НЕ СОГЛАСЕН»
К сожалению, выступления одного ученого против другого осложнены порой тяжелыми психоло!ическими травмами. Конечно, такой исход необязательно сопровождает их научную полемику. Более того, известны случаи не просто терпимых, но и близких, даже дружественных отношений между исследователями, стоящими на противоположных позициях. Не откажем в удовольствии предъявить читателю некоторые из подобных фактов.
Обратимся снова к Ч. Дарвину. В числе других его теорию не признавал также известный французский зоолог Ж— Фабр — личность вообще интересная, и мы еще вернемся к нему. Его критика дарвинизма нередко достигала высокого накала. Однако выдающиеся ученые оставались друзьями, ценили друг друга и не только за чисто человеческие качества. Ж. Фабр, например, отмечал в Ч. Дарвине «поразительную преданность науке», с восхищением отзывался о его неутомимой работе.
В свою очередь, и Ч. Дарвин отдавал должное таланту своего друга. Более того, видел в его исследованиях поддержку своим идеям. Он писал Ж. Фабру: «Не думаю, чтобы в Европе нашелся кто-нибудь, кого Ваши работы интересуют больше, чем меня».
Длительная, временами острая полемика между дарвинистом Т. Гексли и его постоянным оппонентом Д. Уордом не ожесточила, однако, их. Несмотря на колкости, которыми они порой сопровождали свои споры, оба англичанина оставались джентльменами, были взаимно доброжелательны, исполнены искреннего расположения. Оценивая их отношения, писатель У. Ирвин в книге «Дарвин и Гексли» отмечает даже, что Т. Гексли и Д. Уорд «научились воевать с удивительной приязнью друг к другу, поднявшись над жестокой враждой и полным несходством взглядов до веселой и даже задушевной товарищеской близости».
К сожалению, чаще драма идей сопровождается драмой людей, когда неприятие взглядов порождает реакцию «эмоционального вытеснения» таланта талантом.
Отношения обостряются настолько, что нередко враждующая сторона заведомо, даже не пожелав вникнуть в существо развиваемой позиции, отвергает ее. Получается вроде следующего: «Я не слышал, что вы сказали, но я с вами совершенно не согласен».
Этот остроумный афоризм годится, чтобы характеризовать отношение, которое поначалу питал выдающийся немецкий физик конца XIX века Г. Герц к столь же выдающемуся английскому коллеге Д. Максвеллу. Предметом расхождения явилась электромагнитная теория.
Вообще, это детище Д. Максвелла вызывало сильнейшее противодействие. Мы уже рассказывали, как сопротивлялся теории В. Томсон. Ее выводы не признал также известный французский физик того времени П. Дюгем. К числу непринявших присоединился и крупнейший немецкий естествоиспытатель Г. Гельмгольц, а уже вслед за ним — его ученик Г. Герц.
Со стороны немецких исследователей возражения касались вопроса передачи взаимодействий. Оба они разделяли позицию дальнодействия, то есть передачи сигналов без посредников и мгновенно в силу особых, никому не известных пока свойств материи. Д. Максвелл же опирался на допущение промежуточной среды, в которой электрические и магнитные явления распространяются с конечной скоростью, равной скорости света.
Г. Герц ставит серию опытов, чтобы опровергнуть Д. Максвелла, но опровергает… Г. Гельмгольца, следуют новые опыты, а результат тот же. Г. Герц даже пытается одно время уйти от этих проблем, заняться другими. По не тут-то было! «Электромагнитная тема» влечет его, более того, выводит на работы Д. Максвелла. Словом, все это закончилось тем, что, «поймав» электромагнитною волну, которая оставалась до этого лишь предположением, Г. Герц стал виновником торжества оспариваемых им ранее идей.
«Эмоцией вытеснения» исполнены отношения многих других ученых. Например, И. Ньютона и Г. Лейбница, французских математиков конца XVIII — начала XIX века Л. Пуансо и О. Кошн. Г. Галилей полностью игнорировал законы движения планет, установленные в начале XVII века известным немецким ученым И. Кеплером. Хотя он знал об открытии и даже одно время переписывался с И. Кеплером, Г. Галилей в своих работах нигде не упоминает о законах, а рассуждения ведет так, словно их никогда и не было.
Взаимные связи между исследователями отмечены и такими моментами.
Изобретатель паровой машины Д. Уатт на пути к признанию своего результата встретил груду препятствий, чинимых недоброжелателями. Дело в том, что Д. Уатт добивался создания паровой машины не просто как механизма, годного лишь для особых целей, скажем, для откачки воды в качестве насоса или для использования только в текстильной промышленности и т. п. Он намеревался построить универсальный двигатель современного ему производства. В конце концов он достиг этого. Но было на его пути немало неудач.
К примеру, крупным провалом отмечен 1769 год, когда изобретатель собрал и задумал испытать паровую установку с отделенным конденсатором. Не вышло.
Этим сразу же воспользовались соперники, чтобы очернить идею Д. Уатта. Так же и в других случаях ему приходилось в трудных условиях отстаивать свои замыслы.
А вместе с тем и сам-то он, можно сказать, не остался в долгу. Когда его соотечественник Р. Тревитик создал паровую машину высокого давления, Д. Уатт развил завидную энергию, выступая против. Он доказывал, будто подобные остановки наносят вред прогрессу паровой техники, и выражался даже в том смысле, что Р. Тревитика… мало повесить.
В свое время Т. Эдисона часто травили и высмеивали как мошенника, препятствуя внедрению его открытий. Притом чем более оригинальным было изобретение, тем изобретательнее действовали критики.
Но странное дело. Ведь и сам Т. Эдисон в ряде случаев оказал своим высоким авторитетом сопротивление ценным научно-техническим идеям.
В 1867 году по дну Атлантического океана прокладывали телеграфный кабель, связывающий Европу и Америку. Великий изобретатель поспешил со следующим заявлением, которое было опубликовано в газетах: «Из этой затеи ничего не получится». И пояснял, что ток, проходя столь большие расстояния, не способен будет переносить сигнал без значительных искажений.
Правда, когда трансатлантический телеграф между континентами стал успешно действовать, Т. Эдисон тут же признал свою ошибку.
Столь же неоправданную поспешность допустил он и по поводу еще одного выдающегося изобретения.
В 1928 году советская пресса сообщила о создании в России С. Лебедевым искусственного синтетического каучука (СК). Т. Эдисон откликнулся на это так:
«Известие о том, — писал он, — что Советскому Союзу удалось получить синтетический каучук, невероятно.
Этого никак нельзя сделать. Скажу больше — все сообщение ложь».
Впрочем, такая реакция лишь рельефнее оттеняет значение открытия, сделанного С. Лебедевым. Он действительно превысил «полномочия» науки того времени, пройдя через невозможное.
Мы привлекли факты, повествующие о выступлениях ученых против своих коллег, против истин, создаваемых другими. Но верхом парадоксальности оказывается положение, когда исследователь опровергает… самого себя, воюет с собственными результатами.
Почему это происходит?
Каждая принципиально новая теория, несущая новую парадигму, бесспорно, выходит за рамки привычного опыта, порывая с теми представлениями, которые он питал. Но все, что не согласуется с опытными данными, воспринимается как парадокс. И не только другими, а поначалу даже нередко и автором новой теории.
Так, мысль о вращении Земли казалась на первых порах самому Н. Копернику (о других уже и говорить нечего) неправдоподобной. Известные сомнения испытал, выдвигая принципы своей механики, И. Ньютон.
Считал ее «подозрительной». Уже создав основы дифференцнального исчисления, он остался в плену у старою. Великий ученый предпочитал выражать свои физические и астрономические воззрения архаическим языком, используя понятия, введенные еще греками. Не случайно же о И. Ньютоне говорили, что он скорее был не первым представителем века разума, а «последним из вавилонян и египтян», ибо смотрел на мир теми же, что и они, глазами.
Острую борьбу и прежде всего с самим собой пережил И. Кеплер, который пришел к выводу, что планеты движутся вовсе не по круговым орбитам, как полагали со времен древних, а по эллипсам. Это было совершенно неприемлемое допущение, идущее вразрез с вековой традицией.
Хотя И. Кеплер сделал вывод на основе совершенно точных наблюдений за движением Марса, полученных Т. Браге, ученый не смог перешагнуть барьера парадигмы. Его взгляды оставались некоторое время сугубо средневековыми. И только позднее, после упорных лет борьбы со своими убеждениями, великий ученый окончательно принял идею эллиптической формы движения планет. Таким образом, лишь пробивши брешь в собственном сознании, он смог повлиять на сознание других.
Как мы убеждаемся, прокладывать путь к новому мешает порой наше внутреннее сопротивление. «Я вижу это, но не верю этому» — так характеризовал свое состояние Г. Кантор (мы писали о нем), когда получил некоторые странные следствия из аксиом своей теории множеств. В письме известному немецкому математику XIX века Р. Дедекинду он признавался, что пришел к этим результатам вопреки собственной воле и лишь потому, что навязывают логика и 25-летний труд.
Видимо, и в самом деле бороться и искать, отвергать добытое и экспериментировать, отступать и находить новое нам мешает единственная могучая сила — это… мы сами. Хочется испытанных, нормальных дорог.
Потому нехоженые дали часто отпугивают. Вот и получается, что, смело заглянув в неизведанные пространства, люди отступают, пораженные величием увиденного. Наверное, первооткрыватели больше всего и страдают, добывая повое. Им не на кою оглянуться, и в себе не всегда сразу находят они уверенную опору.
«ЛОМКА СОЗНАНИЯ»
Характерны обстоятельства, сопровождавшие рождение и утверждение квантовой механики.
Она описывает движение микрочастиц, то есть частиц малой массы, обладающих специфическими свойствами. Что и говорить, необычная теория. Пришлось отказаться от многих самоочевидных и, казалось, незыблемых представлений.
Ранее мы уже немного касались этого вопроса в связи с опытами по интерференции. Отметим также, что в микромире теряют смысл рассуждения о траектории частиц. Это понятие применительно к обычным явлениям выражает наличие у тела одновременного определенного импульса или количества движения, равного произведению массы тела на скорость, и определенной координаты, то есть положения в пространстве. Но в микровселенной свои порядки. Здесь знать одновременно и импульс и координату частицы оказывается невозможным. И вот почему.
Допустим, мы решили установить положение микрочастицы в пространстве. Для этого нужно направить на нее луч света. Однако световой поток придает нашей частице такое количество движения, такие возмущения, что совершенно изменит ее местонахождение. Поэтому и не представляется возможным одновременно знать местоположение микрообъекта и его импульс. А чтобы описывать поведение микрочастиц, было введено так называемое соотношение неопределенностей, согласно которому произведение неопределенностей координаты частицы и ее импульса не может быть меньше некой постоянной величины (постоянной Планка).
Словом, открылся особый, доселе невиданный мир странных явлений. Он не поддавался объяснению в понятиях господствовавших в ту пору парадигм. Квантовую механику, пытавшуюся ввести новые понятия, одни называли учением с темным прошлым, напоминающим богословие, другие восторженно приветствовали как появление «пикассо-физнки», третьи ждали, что из этого выйдет.
Первые всходы новой теории дали посевы, произведенные еще М. Планком и А. Эйнштейном в самом начале нашего столетия. Исходным пунктом всей квантовой концепции явилась развитая ими квантовая теория света. Но здесь придется сделать небольшое отступление.
Еще в XIX веке в физике стала признанной идея волновой природы света, победившая корпускулярную точку зрения Сторонники последней (и самый авторитетный среди них И. Ньютон) считали, что свет — поток материальных частиц, или корпускул, и имеет прерывный, дискретный характер. Победившая же ее волновая теория представляла свет в виде волн и только волн, которые распространяются непрерывно. Для пояснения этого взгляда на помощь обычно привлекали образ колеблющейся воды, когда она разбегается от места, куда брошен, например, камень.
Однако к началу XX века обнаружились факты, указывающие на несоответствие между законом непрерывного распространения энергии, в частности, световой, и наличным опытом. Разразилась так называемая «ультрафиолетовая катастрофа». Она и образовала одну из тех тучек, что застилали, по выражению В. Томсона, ясный горизонт физического знания.
И вот в 1900 году М. Планк выдвигает совершенно невероятную, парадоксальную гипотезу. Все же он не внял совету своего учителя Ф. Жолли и занялся теоретической физикой. М. Планк предложил идею «зернистого» распределения энергии. Он пришел к выводу, что электромагнитная энергия, носителем которой является свет, излучается и поглощается атомами не непрерывно, а только строго определенными дозами, квантами.
Квант — это минимальная, неделимая порция энергии.
В шутку говорили, что теперь согласно новым представлениям энергия отпускается лишь целыми единицами, совсем как в отделе штучных товаров.
Это коренным образом переворачивало устоявшиеся представления. По выражению известного советского ученого Л. Ландау, М. Планк ввел в физику алогичность.
Однако далось такое решение естествоиспытателю нелегко. Ввести-то он новые понятия ввел, зато потом всю жизнь терзался этим. Когда М. Планк увидел, что квант рушит закон непрерывности излучения и поглощения света, внося дискретность, прерывность, а еще более, когда понял, что его квант вообще подрывает классические устои, ученый самым настоящим образом встревожился.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31