https://wodolei.ru/catalog/rakoviny/santek-bajkal-60-133303-item/
Это математическое понятие совершенно нового типа впоследствии было хорошо изучено и получило название полу вектора, или спинора.
Мы не можем здесь подробно описывать формализм теории Паули, к тому же он не получил широкого применения, ибо вскоре был заменен теорией Дирака. Кроме того, теория Паули не релятивистская. Поэтому ее нельзя применить для предсказания тонкой структуры в смысле, указанном ранее Зоммерфельдом. Однако соображения Паули представляют огромнейший интерес. Они показывают, как можно ввести спин в волновую механику, рассмотрев вероятности двух возможных знаков спина для данного направления и введя вместо однокомпонентной «КСИ»-функции «КСИ»-функцию с несколькими компонентами. И Дираку в его блестящей работе удалось довести до конца эту первую черновую попытку.
4. Теория Дирака
Конечно, Дирак руководствовался идеями Паули, но у него был, кроме того, еще один руководящий принцип: создать вполне удовлетворительную релятивистскую волновую механику. Действительно, как мы видели, с самого начала развития волновой механики предполагалось, что релятивистская волновая механика должна базироваться на волновом уравнении второго порядка по времени. Дирак подверг это предположение тщательному изучению и пришел к заключению, что оно должно быть отвергнуто.
Главное возражение Дирака состояло именно в том, что уравнение распространения в релятивистской квантовой механике не может быть уравнением второго порядка по времени. Из такого уравнения в противоположность выводам нерелятивистской волновой механики следует, что если задано какое-либо начальное состояние, выраженное с помощью некоторой «КСИ»-волны, то закон сохранения полной вероятности не выполняется автоматически. Автоматическое же сохранение полной вероятности необходимо для того, чтобы могли соблюдаться общие принципы новой механики.
Дирак проследил эти соображения с железной логикой и пришел к выводу, что уравнение или уравнения релятивистской волновой механики должны обязательно быть уравнениями первого порядка по времени и что, следовательно, в силу релятивистской симметрии пространства и времени они равным образом должны быть уравнениями первого порядка по координатам пространства. Затем с помощью соображений, на которых мы не можем здесь останавливаться, он показал, что в релятивистской волновой механике волновая функция должна иметь четыре компоненты, которые подчиняются системе четырех уравнений в частных производных, которые в целом заменяют единственное уравнение распространения нерелятивистской волновой механики.
Наконец, Дирак исследовал вопрос о том, как преобразуются уравнения распространения и компоненты волновой функции при переходе от одной системы координат к другой. Он довольно красиво показал, что эти уравнения инвариантны относительно преобразования Лоренца. Это сразу сделало его теорию удовлетворительной с релятивистской точки зрения. Он нашел формулы преобразования для четырех компонент волновой функции, которые оказались не такими, как для пространственно временного четырехвектора, а относятся, как мы покажем, к новому типу спинорных преобразований, уже встречавшихся у Паули.
Поразительна именно эта особенность теории Дирака. Уравнения его теории, полученные только с помощью аргументов чисто релятивистской и квантовой природы, в которых нигде не появляется гипотеза о спине, сами по себе содержат все свойства магнитного вращающегося электрона. Действительно, согласно новым уравнениям распространения, электрон будет вести себя так, будто он обладает собственным магнитным моментом, равным магнетону Бора, и собственным механическим моментом, равным половине квантовой единицы момента. Появление спиновых свойств в уравнениях, полученных без привлечения гипотезы о спине, – один из замечательнейших результатов всей современной теоретической физики среди многих, которыми она богата.
Покажем теперь, как теория Дирака связана с теорией Паули. Все, касающееся спиновых свойств в теории Дирака, нужно привести к форме Паули. Иными словами, следует определить, какова вероятность того, что спин будет обладать той или иной из двух возможных величин в некотором направлении D . Чтобы ответить на этот вопрос, необходимо прежде всего выяснить, как разлагается «КСИ»-функция на четыре компоненты, если ось z направить вдоль D . Вероятность одной из величин + h /4»пи» «альфа»удет тогда выражаться суммой интенсивностей двух четных компонент (второй и четвертой), а вероятность величины – h /4»пи» – суммой интенсивностей нечетных компонент «КСИ»-функции (первой и третьей). Дальнейшее исследование решений уравнения Дирака показывает, что если скорость частицы мала по сравнению со скоростью света, то первыми двумя компонентами волновой функции можно пренебречь по сравнению с двумя последними. Иными словами, если можно пренебречь релятивистскими эффектами, то «КСИ»-функцию достаточно считать двухкомпонентной. При этом интенсивность одной компоненты определяет вероятность одного из возможных значений спина, а интенсивность второй – другого.
Таким образом, мы в точности приходим к теории Паули. Оказывается, последняя – просто нерелятивистское ньютоново приближение теории Дирака. В то же время становится понятным, почему вместо двух компонент в теории Паули «КСИ»-функция в теории Дирака имеет четыре компоненты: существование спина приводит к расщеплению «КСИ»-функции на две компоненты; релятивистские эффекты еще раз приводят к расщеплению каждой из этих двух компонент, причем это второе расщепление исчезает в ньютоновом приближении.
Между прочим заметим, что вся вероятностная интерпретация новой механики очень легко переносится в теорию Дирака ценой некоторого усложнения обозначений. Эта новая точка зрения оказывается здесь совершенно правильной. Прежде всего она позволяет понять проблему тонкой структуры и однозначно обосновать формулы Зоммерфельда, одновременно внося в них исправления.
Действительно, если с помощью уравнения Дирака снова проквантовать атом водорода, то оказывается, что благодаря появлению нового свойства – спина – возникают новые, доселе неизвестные квантовые числа. Они в точности совпадают с внутренними квантовыми числами, введенными эмпирически за несколько лет до этого при классификации спектральных термов, наблюдавшихся на опыте.
Полученная таким путем формула для тонкой структуры совпадает с формулой Зоммерфельда, в которой старые азимутальные квантовые числа заменены новыми квантовыми числами. В результате такой последовательной повсеместной замены достигается полное совпадение экспериментально наблюдаемых спектров с теоретическими. Аналогичные результаты получаются и для более тяжелых атомов, если, конечно, можно довести до конца все расчеты, введя некоторые упрощающие предположения. Таким образом, трудности, связанные с рентгеновскими дублетами, устраняются. Итак, важная идея Зоммерфельда о введении в квантовую теорию релятивистских понятий для объяснения тонкой структуры оказалась верной. Однако, чтобы получить вполне удовлетворительные результаты, понадобилось ввести также спин. Первый успех Зоммерфельда не случаен, однако в его теории отсутствовал еще один важный элемент: спин.
Теории Дирака удалось также полностью объяснить магнитные аномалии. При изучении эффекта Зеемана было обнаружено существование аномальных эффектов, которые вызвали большой интерес теоретиков того времени. Причину такого успеха легко понять. Чтобы добиться объяснения аномальных эффектов, нужно было приписать отношению магнитного момента атома к его механическому моменту значение, отличное от так называемого нормального. Это нормальное значение возникает из гипотезы, что магнитный момент атома – результат исключительно орбитального движения его электронов. Приписывая же электрону в соответствии с гипотезой Уленбека и Гоудсмита собственный магнитный момент, отношение которого к его собственному механическому моменту равно удвоенному по сравнению с нормальным значению, теории Дирака удалось выйти из рамок нормального эффекта Зеемана и предсказать аномальные эффекты. И это успех не только качественный, но и количественный. Действительно, расчеты позволяют подтвердить формулу Ланде и предсказать несколько эмпирически величину коэффициента, введенного им для описания аномальных эффектов.
В действительности очень красивая работа Дирака дала, таким образом, замечательные результаты. Она охватила весь комплекс спектроскопических и магнитных явлений, упорно не поддававшихся никаким попыткам объяснения, которые в конце концов с необходимостью привели к представлению о спине. Вызывает восхищение путь, которым было осуществлено объединение квантовой точки зрения с гипотезой Уленбека и Гоудсмита. Можно спросить, сколь далеко идет теория Дирака в применении и слиянии квантовых и релятивистских представлений, ибо первые требуют существенной дискретности, а вторые пронизаны представлением о непрерывности. Это трудный вопрос, который мы не хотели бы здесь обсуждать. Нам кажется, что слияние релятивистских и квантовых представлений осуществлено в теории Дирака не вполне удовлетворительно. Однако в целом здание этой теории восхитительно и представляет собой в настоящее время кульминационный пункт волновой механики электрона.
Не останавливаясь на изучении других приложений теории Дирака, например на проблеме рассеяния излучения веществом (формула Клейна – Нишины), мы хотели бы поговорить об одном странном следствии уравнений Дирака, которое на первый взгляд составляет слабый пункт теории, а на самом деле оказывается ее достижением.
5. Состояния с отрицательной энергией. Положительный электрон
Уравнения теории Дирака проявляют особые свойства, допуская решения, соответствующие состояниям частицы, энергия которой может быть отрицательной. Электрон в одном из этих состояний должен обладать довольно странными свойствами. Чтобы увеличить его скорость, у него нужно отнять энергию. И, наоборот, чтобы его остановить, нужно сообщить ему некоторую энергию. В эксперименте электрон никогда не вел себя так странно. Поэтому вполне законно было считать, что состояния с отрицательной энергией, существование которых допускает теория Дирака, в действительности в природе не реализуются. Можно было бы сказать, что в этом смысле теория дает слишком много, по крайней мере на первый взгляд.
То, что уравнения Дирака допускают возможность существования состояний с отрицательной энергией, это, несомненно, результат их релятивистского характера. Действительно, даже в релятивистской динамике электрона, развитой Эйнштейном в рамках специальной теории относительности, обнаруживается возможность движения с отрицательной энергией. Однако в то время в динамике Эйнштейна трудность была не очень серьезной, ибо она, как и все предыдущие теории, предполагала, что все физические процессы непрерывны. А так как собственная масса электрона конечна, то он всегда обладает конечной внутренней энергией в соответствии с релятивистским принципом эквивалентности массы и энергии. Поскольку эта внутренняя энергия не может исчезать, то мы не можем непрерывным образом перейти от состояния с положительной к состоянию с отрицательной энергией. Таким образом, предположение о непрерывности физических процессов полностью исключает такого рода переход.
Следовательно, достаточно предположить, что в начальный момент времени все электроны находятся в состояниях с положительной энергией, чтобы увидеть, что состояние всегда остается таким же. Трудность становится гораздо более серьезной в механике Дирака, ибо это механика квантовая, допускающая существование дискретных переходов в физических явлениях. Можно легко видеть, что переходы между состояниями с положительной и отрицательной энергией не только возможны, но и должны происходить довольно часто. Клейн привел интересный пример того, как электрон с положительной энергией, попав в область, где действует быстро меняющееся поле, может покинуть эту область в состоянии с отрицательной энергией. Следовательно, то, что экспериментально электрон с отрицательной энергией ни разу не был обнаружен, оказывалось очень опасно для теории Дирака.
Чтобы обойти эту трудность, Дирак выдвинул очень остроумную идею. Заметив, что согласно принципу Паули, о котором мы поговорим в следующей главе, в одном состоянии не может находиться более одного электрона, он предположил, что в нормальном состоянии окружающего мира все состояния с отрицательной энергией заняты электронами. Отсюда следует, что плотность электронов с отрицательной энергией везде одинакова. Дирак выдвинул предположение, что эту однородную плотность наблюдать невозможно. В то же время электронов существует больше, чем необходимо для заполнения всех состояний с отрицательной энергией.
Этот избыток и представляют собой электроны с положительной энергией, их-то мы и можем наблюдать в наших экспериментах. В исключительных случаях электрон с отрицательной энергией может под действием внешней силы перейти в состояние с положительной энергией. При этом мгновенно появляется наблюдаемый электрон и в то же время образуется дырка, пустое место, в распределении электронов с отрицательной энергией. Дирак показал, что такая дырка может наблюдаться экспериментально и должна вести себя подобно частице с массой, равной массе электрона и равным ему, но противоположным по знаку зарядом. Мы будем воспринимать его как антиэлектрон, положительный электрон. Эта неожиданно образовавшаяся дырка не может долго существовать. Она будет заполнена электроном с положительной энергией, который испытает спонтанный переход в пустое состояние с отрицательной энергией, сопровождающийся излучением.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Мы не можем здесь подробно описывать формализм теории Паули, к тому же он не получил широкого применения, ибо вскоре был заменен теорией Дирака. Кроме того, теория Паули не релятивистская. Поэтому ее нельзя применить для предсказания тонкой структуры в смысле, указанном ранее Зоммерфельдом. Однако соображения Паули представляют огромнейший интерес. Они показывают, как можно ввести спин в волновую механику, рассмотрев вероятности двух возможных знаков спина для данного направления и введя вместо однокомпонентной «КСИ»-функции «КСИ»-функцию с несколькими компонентами. И Дираку в его блестящей работе удалось довести до конца эту первую черновую попытку.
4. Теория Дирака
Конечно, Дирак руководствовался идеями Паули, но у него был, кроме того, еще один руководящий принцип: создать вполне удовлетворительную релятивистскую волновую механику. Действительно, как мы видели, с самого начала развития волновой механики предполагалось, что релятивистская волновая механика должна базироваться на волновом уравнении второго порядка по времени. Дирак подверг это предположение тщательному изучению и пришел к заключению, что оно должно быть отвергнуто.
Главное возражение Дирака состояло именно в том, что уравнение распространения в релятивистской квантовой механике не может быть уравнением второго порядка по времени. Из такого уравнения в противоположность выводам нерелятивистской волновой механики следует, что если задано какое-либо начальное состояние, выраженное с помощью некоторой «КСИ»-волны, то закон сохранения полной вероятности не выполняется автоматически. Автоматическое же сохранение полной вероятности необходимо для того, чтобы могли соблюдаться общие принципы новой механики.
Дирак проследил эти соображения с железной логикой и пришел к выводу, что уравнение или уравнения релятивистской волновой механики должны обязательно быть уравнениями первого порядка по времени и что, следовательно, в силу релятивистской симметрии пространства и времени они равным образом должны быть уравнениями первого порядка по координатам пространства. Затем с помощью соображений, на которых мы не можем здесь останавливаться, он показал, что в релятивистской волновой механике волновая функция должна иметь четыре компоненты, которые подчиняются системе четырех уравнений в частных производных, которые в целом заменяют единственное уравнение распространения нерелятивистской волновой механики.
Наконец, Дирак исследовал вопрос о том, как преобразуются уравнения распространения и компоненты волновой функции при переходе от одной системы координат к другой. Он довольно красиво показал, что эти уравнения инвариантны относительно преобразования Лоренца. Это сразу сделало его теорию удовлетворительной с релятивистской точки зрения. Он нашел формулы преобразования для четырех компонент волновой функции, которые оказались не такими, как для пространственно временного четырехвектора, а относятся, как мы покажем, к новому типу спинорных преобразований, уже встречавшихся у Паули.
Поразительна именно эта особенность теории Дирака. Уравнения его теории, полученные только с помощью аргументов чисто релятивистской и квантовой природы, в которых нигде не появляется гипотеза о спине, сами по себе содержат все свойства магнитного вращающегося электрона. Действительно, согласно новым уравнениям распространения, электрон будет вести себя так, будто он обладает собственным магнитным моментом, равным магнетону Бора, и собственным механическим моментом, равным половине квантовой единицы момента. Появление спиновых свойств в уравнениях, полученных без привлечения гипотезы о спине, – один из замечательнейших результатов всей современной теоретической физики среди многих, которыми она богата.
Покажем теперь, как теория Дирака связана с теорией Паули. Все, касающееся спиновых свойств в теории Дирака, нужно привести к форме Паули. Иными словами, следует определить, какова вероятность того, что спин будет обладать той или иной из двух возможных величин в некотором направлении D . Чтобы ответить на этот вопрос, необходимо прежде всего выяснить, как разлагается «КСИ»-функция на четыре компоненты, если ось z направить вдоль D . Вероятность одной из величин + h /4»пи» «альфа»удет тогда выражаться суммой интенсивностей двух четных компонент (второй и четвертой), а вероятность величины – h /4»пи» – суммой интенсивностей нечетных компонент «КСИ»-функции (первой и третьей). Дальнейшее исследование решений уравнения Дирака показывает, что если скорость частицы мала по сравнению со скоростью света, то первыми двумя компонентами волновой функции можно пренебречь по сравнению с двумя последними. Иными словами, если можно пренебречь релятивистскими эффектами, то «КСИ»-функцию достаточно считать двухкомпонентной. При этом интенсивность одной компоненты определяет вероятность одного из возможных значений спина, а интенсивность второй – другого.
Таким образом, мы в точности приходим к теории Паули. Оказывается, последняя – просто нерелятивистское ньютоново приближение теории Дирака. В то же время становится понятным, почему вместо двух компонент в теории Паули «КСИ»-функция в теории Дирака имеет четыре компоненты: существование спина приводит к расщеплению «КСИ»-функции на две компоненты; релятивистские эффекты еще раз приводят к расщеплению каждой из этих двух компонент, причем это второе расщепление исчезает в ньютоновом приближении.
Между прочим заметим, что вся вероятностная интерпретация новой механики очень легко переносится в теорию Дирака ценой некоторого усложнения обозначений. Эта новая точка зрения оказывается здесь совершенно правильной. Прежде всего она позволяет понять проблему тонкой структуры и однозначно обосновать формулы Зоммерфельда, одновременно внося в них исправления.
Действительно, если с помощью уравнения Дирака снова проквантовать атом водорода, то оказывается, что благодаря появлению нового свойства – спина – возникают новые, доселе неизвестные квантовые числа. Они в точности совпадают с внутренними квантовыми числами, введенными эмпирически за несколько лет до этого при классификации спектральных термов, наблюдавшихся на опыте.
Полученная таким путем формула для тонкой структуры совпадает с формулой Зоммерфельда, в которой старые азимутальные квантовые числа заменены новыми квантовыми числами. В результате такой последовательной повсеместной замены достигается полное совпадение экспериментально наблюдаемых спектров с теоретическими. Аналогичные результаты получаются и для более тяжелых атомов, если, конечно, можно довести до конца все расчеты, введя некоторые упрощающие предположения. Таким образом, трудности, связанные с рентгеновскими дублетами, устраняются. Итак, важная идея Зоммерфельда о введении в квантовую теорию релятивистских понятий для объяснения тонкой структуры оказалась верной. Однако, чтобы получить вполне удовлетворительные результаты, понадобилось ввести также спин. Первый успех Зоммерфельда не случаен, однако в его теории отсутствовал еще один важный элемент: спин.
Теории Дирака удалось также полностью объяснить магнитные аномалии. При изучении эффекта Зеемана было обнаружено существование аномальных эффектов, которые вызвали большой интерес теоретиков того времени. Причину такого успеха легко понять. Чтобы добиться объяснения аномальных эффектов, нужно было приписать отношению магнитного момента атома к его механическому моменту значение, отличное от так называемого нормального. Это нормальное значение возникает из гипотезы, что магнитный момент атома – результат исключительно орбитального движения его электронов. Приписывая же электрону в соответствии с гипотезой Уленбека и Гоудсмита собственный магнитный момент, отношение которого к его собственному механическому моменту равно удвоенному по сравнению с нормальным значению, теории Дирака удалось выйти из рамок нормального эффекта Зеемана и предсказать аномальные эффекты. И это успех не только качественный, но и количественный. Действительно, расчеты позволяют подтвердить формулу Ланде и предсказать несколько эмпирически величину коэффициента, введенного им для описания аномальных эффектов.
В действительности очень красивая работа Дирака дала, таким образом, замечательные результаты. Она охватила весь комплекс спектроскопических и магнитных явлений, упорно не поддававшихся никаким попыткам объяснения, которые в конце концов с необходимостью привели к представлению о спине. Вызывает восхищение путь, которым было осуществлено объединение квантовой точки зрения с гипотезой Уленбека и Гоудсмита. Можно спросить, сколь далеко идет теория Дирака в применении и слиянии квантовых и релятивистских представлений, ибо первые требуют существенной дискретности, а вторые пронизаны представлением о непрерывности. Это трудный вопрос, который мы не хотели бы здесь обсуждать. Нам кажется, что слияние релятивистских и квантовых представлений осуществлено в теории Дирака не вполне удовлетворительно. Однако в целом здание этой теории восхитительно и представляет собой в настоящее время кульминационный пункт волновой механики электрона.
Не останавливаясь на изучении других приложений теории Дирака, например на проблеме рассеяния излучения веществом (формула Клейна – Нишины), мы хотели бы поговорить об одном странном следствии уравнений Дирака, которое на первый взгляд составляет слабый пункт теории, а на самом деле оказывается ее достижением.
5. Состояния с отрицательной энергией. Положительный электрон
Уравнения теории Дирака проявляют особые свойства, допуская решения, соответствующие состояниям частицы, энергия которой может быть отрицательной. Электрон в одном из этих состояний должен обладать довольно странными свойствами. Чтобы увеличить его скорость, у него нужно отнять энергию. И, наоборот, чтобы его остановить, нужно сообщить ему некоторую энергию. В эксперименте электрон никогда не вел себя так странно. Поэтому вполне законно было считать, что состояния с отрицательной энергией, существование которых допускает теория Дирака, в действительности в природе не реализуются. Можно было бы сказать, что в этом смысле теория дает слишком много, по крайней мере на первый взгляд.
То, что уравнения Дирака допускают возможность существования состояний с отрицательной энергией, это, несомненно, результат их релятивистского характера. Действительно, даже в релятивистской динамике электрона, развитой Эйнштейном в рамках специальной теории относительности, обнаруживается возможность движения с отрицательной энергией. Однако в то время в динамике Эйнштейна трудность была не очень серьезной, ибо она, как и все предыдущие теории, предполагала, что все физические процессы непрерывны. А так как собственная масса электрона конечна, то он всегда обладает конечной внутренней энергией в соответствии с релятивистским принципом эквивалентности массы и энергии. Поскольку эта внутренняя энергия не может исчезать, то мы не можем непрерывным образом перейти от состояния с положительной к состоянию с отрицательной энергией. Таким образом, предположение о непрерывности физических процессов полностью исключает такого рода переход.
Следовательно, достаточно предположить, что в начальный момент времени все электроны находятся в состояниях с положительной энергией, чтобы увидеть, что состояние всегда остается таким же. Трудность становится гораздо более серьезной в механике Дирака, ибо это механика квантовая, допускающая существование дискретных переходов в физических явлениях. Можно легко видеть, что переходы между состояниями с положительной и отрицательной энергией не только возможны, но и должны происходить довольно часто. Клейн привел интересный пример того, как электрон с положительной энергией, попав в область, где действует быстро меняющееся поле, может покинуть эту область в состоянии с отрицательной энергией. Следовательно, то, что экспериментально электрон с отрицательной энергией ни разу не был обнаружен, оказывалось очень опасно для теории Дирака.
Чтобы обойти эту трудность, Дирак выдвинул очень остроумную идею. Заметив, что согласно принципу Паули, о котором мы поговорим в следующей главе, в одном состоянии не может находиться более одного электрона, он предположил, что в нормальном состоянии окружающего мира все состояния с отрицательной энергией заняты электронами. Отсюда следует, что плотность электронов с отрицательной энергией везде одинакова. Дирак выдвинул предположение, что эту однородную плотность наблюдать невозможно. В то же время электронов существует больше, чем необходимо для заполнения всех состояний с отрицательной энергией.
Этот избыток и представляют собой электроны с положительной энергией, их-то мы и можем наблюдать в наших экспериментах. В исключительных случаях электрон с отрицательной энергией может под действием внешней силы перейти в состояние с положительной энергией. При этом мгновенно появляется наблюдаемый электрон и в то же время образуется дырка, пустое место, в распределении электронов с отрицательной энергией. Дирак показал, что такая дырка может наблюдаться экспериментально и должна вести себя подобно частице с массой, равной массе электрона и равным ему, но противоположным по знаку зарядом. Мы будем воспринимать его как антиэлектрон, положительный электрон. Эта неожиданно образовавшаяся дырка не может долго существовать. Она будет заполнена электроном с положительной энергией, который испытает спонтанный переход в пустое состояние с отрицательной энергией, сопровождающийся излучением.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35