https://wodolei.ru/catalog/rakoviny/podvesnye/
Но теория Френеля, великолепно объяснив все эти баллистические аспекты с чисто волновой точки зрения, привела к тому, что корпускулярная картина оказалась не у дел. Открытие фотоэффекта заставило снова вернуться к представлениям такого рода, хотя, конечно, уже соотношение Эйнштейна между энергией фотона и его частотой показывало, что волновая концепция не отвергается начисто и фотонная теория должна как-то объединить волновые и корпускулярные представления таким образом, чтобы оба аспекта имели определенный физический смысл.
Наконец, следует указать еще на одну тонкость. Согласно классическим представлениям энергия материальной частицы – это величина, имеющая какое-то вполне определенное значение. В теории же излучения никакое излучение нельзя рассматривать как строго монохроматическое, поскольку оно всегда содержит компоненты, частоты которых отличаются друг от друга. Ширина этого спектрального интервала может быть очень мала, но все же всегда отлична от нуля. Этот факт Планк подчеркивал уже в первых своих работах по теории излучения черного тела. Вследствие этого соотношение Эйнштейна, приравнивающее энергию частицы света, фотона, частоте, соответствующей классической волне, умноженной на h , носит несколько парадоксальный характер, поскольку оно приравнивает одну величину, имеющую вполне определенное значение, другой, не имеющей, строго говоря, никакого определенного значения. Дальнейшее развитие квантовой механики раскрыло истинный смысл этого противоречия.
Итак, можно сказать, что фотонная гипотеза, превосходно объясняющая явления фотоэффекта и комптоновского рассеяния, не дает возможности построить последовательную корпускулярную теорию излучения. Она требует развития более глубокой теории, в которой излучение может обладать и волновым и корпускулярным аспектами, причем связь между ними должна быть установлена так, чтобы выполнялось соотношение Эйнштейна.
5. Первые приложения квантовой гипотезы
Гипотеза квантов, блестяще подтвержденная успехом теории излучения черного тела Планка и теории фотоэффекта Эйнштейна, не замедлила обнаружить свою эффективность и в других областях. Приведем несколько примеров.
Статистическая механика доказала теорему о равнораспределении энергии по степеням свободы. В общем виде ее можно сформулировать следующим образом. В механической системе, обладающей очень большим числом степеней свободы и находящейся в состоянии термодинамического равновесия при постоянной температуре, энергия теплового движения распределяется таким образом, что на каждую степень свободы приходится одинаковое ее количество.
Эта теория, совершенно строго доказанная в рамках классической статистической механики, часто очень хорошо подтверждается на опыте.
В частности, блестяще подтвердились следующие из этой теоремы выводы о средней кинетической энергии атомов и молекул в газах, а также вывод об общем характере зависимости теплоемкости газообразных тел от температуры. И тем не менее, как показало дальнейшее развитие квантовой теории, эта теорема оказывается несправедливой. Это, например, следует уже из того, 'что применение ее к равновесному излучению черного тела, приводит к неправильному закону спектрального распределения плотности энергии черного излучения (закон Рэлея – Джинса). И квантовая гипотеза Планка была введена, в частности, для того, чтобы обойти закон о равнораспределении энергии. Если гипотеза Планка справедлива, то она должна позволить определить также границы применимости классических законов и в других областях физики.
Рассмотрим, например, теорию твердых тел. В однородных твердых телах в отсутствие теплового движения атомы находятся в положении равновесия. При тепловом движении атомы колеблются около своих положений равновесия, причем амплитуда этих колебаний тем больше, чем выше температура тела. Согласно теореме о равнораспределении энергии по степеням свободы все атомы, входящие в состав твердого тела, должны обладать одной и той же средней энергией. Основанные на этой теореме статистической механики расчеты приводят к следующему простому и весьма общему результату: атомная теплоемкость всех твердых тел (иначе говоря, количество тепла, которое надо сообщить одному грамм-атому твердого тела, чтобы поднять его температуру на один градус) приблизительно равна шести калориям. В этом и заключается известный закон Дюлонга и Пти, экспериментально установленный ими еще до получения теоретических результатов. Этот закон так хорошо подтверждался для большинства твердых тел при обычных температурах, что химики даже использовали его для определения молекулярного веса некоторых веществ.
Однако закон Дюлонга и Пти выполняется хотя и очень часто, но не всегда. Некоторые тела, как правило, очень твердые, например алмаз, обладают атомной теплоемкостью, значение которой меньше шести. Кроме того, с понижением температуры для всех твердых тел наступает момент, когда закон Дюлонга и Пти начинает нарушаться и теплоемкость становится меньше своего нормального значения. Квантовая теория очень хорошо объяснила эти отклонения.
В общих чертах это объяснение заключается в следующем. В твердых телах атомы колеблются около своего положения равновесия с частотой, значение которой определяется массой атома и коэффициентом упругости возвращающей силы. Энергия колебаний согласно квантовой гипотезе должна быть по меньшей мере равна кванту энергии, соответствующему частоте этих колебаний. Следовательно, если температура будет настолько низка, что энергия, которую в состоянии получить атом, меньше энергии соответствующего кванта, то этот атом останется неподвижным, и, таким образом, теорема о равнораспределении энергии уже не будет иметь места. Для атомов большинства твердых тел это минимальное значение энергии достаточно мало, так что при нормальных температурах средняя энергия теплового движения оказывается много больше ее и теорема о равнораспределении энергии и, следовательно, закон Дюлонга и Пти выполняются. Однако для очень твердых тел, таких, как, например, алмаз, в которых атомы связаны между собой более жестко, величина соответствующего кванта настолько велика, что уже при нормальных температурах теорема о равнораспределении энергии не имеет места. Ясно также, что с понижением температуры для всех твердых тел рано или поздно должен наступить момент, когда энергии теплового движения будет уже недостаточно для возбуждения всех атомов, и значение теплоемкости упадет по сравнению с его нормальным значением.
Теория теплоемкостей, основанная на квантовой гипотезе, была предложена Эйнштейном и Линдеманом, а затем Дебаем, Борном и Карманом. Эта теория легко объяснила отклонения от закона Дюлонга и Пти и зависимость теплоемкостей от температуры. Более того, теория теплоемкостей оказалась применимой, mutatis mutandis, также и к газообразным телам. В частности, она позволила понять, почему внутренние степени свободы сложных молекул оказываются при низких температурах как бы «замороженными», факт совершенно необъяснимый с точки зрения классической статистической механики.
Все эти результаты были серьезным подтверждением квантовой гипотезы. Основанные на ней расчеты верхней границы непрерывного спектра рентгеновских лучей, возникающих при бомбардировке антикатода ускоренными электронами, также подтвердили ее справедливость.
Все формулы, полученные с помощью квантовой теории, содержат постоянную Планка h . Сравнение их с экспериментальными данными позволяет определить ее численное значение. Полученные всеми этими различными методами значения постоянной Планка оказались чрезвычайно близки между собой.
Итак, к 1913 г. гениальная гипотеза Планка была подтверждена многочисленными фактами. Появившаяся в это время теория атома Бора принесла ей новое, блестящее подтверждение, показав, до какой степени само строение материи связано с существованием квантов.
Глава VI. Атом Бора
1. Спектры и спектральные линии
Невозможно непосредственно изучать внутреннее строение атома, этого микромира невообразимо малых размеров, характеризуемого процессами, недоступными нашему прямому восприятию. Структура атома проявляется только косвенно в явлениях макроскопического масштаба, которые как-то связаны с его внутренним строением.
К числу этих явлений относится, в частности, излучение атомов, возбуждаемых термически или посредством внешнего электрического поля. Это излучение характеризует определенные свойства атома, поскольку оно связано с процессами, протекающими внутри него. Исследование свойств этого излучения позволяет получить некоторые сведения о внутренней структуре атома. Таким образом, изучение и классификация оптических спектров излучения различных атомов приобретает большое значение.
Эта задача, однако, отнюдь не проста, поскольку оптические спектры имеют очень сложный характер и при исследовании невидимой простым глазом инфракрасной и ультрафиолетовой частей спектра необходимо пользоваться сложной специальной аппаратурой. Однако мало-помалу, в результате тщательных и кропотливых исследований ученым удалось установить некоторые общие закономерности в характере спектров и найти эмпирические законы, которым они подчиняются. Прежде всего было замечено, что спектральные линии всех элементов можно разбить на семейства или, как говорят в физике, серии, причем структуры соответствующих серий, относящихся к различным химическим элементам, оказались очень схожи между собой. В пределах едкой серии расположение различных спектральных линий имеет вполне определенный характер и может быть описано простой математической формулой.
В частности, в 1885 г. Бальмеру удалось найти формулу, описывающую распределение спектральных линий видимого спектра атома водорода, получивших название серии Бальмера. Эта формула определяет частоту, соответствующую последовательным линиям серии Бальмера, как функцию целого числа. Исследования излучения, проведенные в невидимой части спектра, показали существование серий, расположенных в ультрафиолетовой (серия Лаймана) и инфракрасной областях (серии Пашена, Бэккета, Пфунда), и в каждой из этих серий формулы, определяющие расположение спектральных линий, совершенно аналогичны формуле, полученной для серии Бальмера.
Подобные же спектральные серии, хотя и обладающие более сложной структурой, имеются не только у водорода, но и у некоторых других элементов, у щелочных металлов. В каждой такой серии расположение линий определяется формулой, аналогичной формуле Бальмера, т е. частота, соответствующая какой-либо линии этой серии, выражается в виде разности двух слагаемых, одно из которых зависит только от номера серии и постоянно для всех линий данной серии, а второе определяется номером линии в этой серии. Такой специфический вид этой формулы и объясняет, в частности, то, что частота некоторой спектральной линии часто оказывается равной сумме частот, соответствующих каким-либо двум другим линиям спектра. Этот факт был установлен экспериментально и позволил Ритцу открыть общий закон, носящий название комбинационного принципа и ставший основой всей современной спектроскопии.
Комбинационный принцип можно сформулировать следующим образом: для каждого атома возможно найти последовательность чисел, называемых спектральными термами этого атома, таких, что частоты всех спектральных линий данного атома будут выражаться в виде разности двух каких-либо спектральных термов. Как аддитивные свойства частот, так и соотношения, определяющие расположение спектральных линий в различных сериях, легко могут быть получены из комбинационного принципа. Справедливость его можно считать неоспоримо подтвержденной многочисленными экспериментальными данными. Но обоснование его связано с разгадкой строения атома и должно объяснить, как и какими именно процессами перестройки внутренней структуры атома вызывается излучение волн с частотой, соответствующей какой-либо спектральной линии. Таким образом, перед теоретической физикой встала важная и неотложная задача теоретического обоснования комбинационного принципа Ритца.
К сожалению, классическая теоретическая физика оказалась совершенно неспособной объяснить полученные эмпирическим путем законы, которым подчиняются атомные спектры. Действительно, для объяснения спектров излучения в рамках классической электродинамики необходимо допустить внутри излучающего вещества наличие колеблющихся заряженных частиц. Например, можно предположить, что атомы вещества содержат электроны, которые в нормальном состоянии, когда нет излучения, неподвижны и находятся в равновесии, но под воздействием каких-либо внешних причин могут начать колебаться около своего положения равновесия. Однако получаемые при этом спектральные законы находятся в вопиющем противоречии с опытными данными. Именно об этом поражении классической физики писал в 1905 г. Анри Пуанкаре: «На первый взгляд изучение спектров приводит нас к мысли о гармониках, с которыми мы уже встречались в акустике. Однако имеется существенное различие: не только волновые числа не кратны одной и той же величине, но мы не находим здесь также никакой аналогии с корнями тех трансцендентных уравнений, к которым так часто приводят задачи математической физики, такие, как, например, задача о колебаниях тела определенной формы или задача о колебаниях Герца в резонаторе или, наконец, задача Фурье об охлаждении твердого тела. Эти законы проще, но они имеют совершенно иную природу… В этом не отдавали себе отчета, и я думаю, что здесь и кроется один из важнейших секретов природы».
«И я думаю, что именно здесь кроется один из важнейших секретов природы». Фраза поистине пророческая, если вспомнить, что она была написана за десять лет до появления теории Бора.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Наконец, следует указать еще на одну тонкость. Согласно классическим представлениям энергия материальной частицы – это величина, имеющая какое-то вполне определенное значение. В теории же излучения никакое излучение нельзя рассматривать как строго монохроматическое, поскольку оно всегда содержит компоненты, частоты которых отличаются друг от друга. Ширина этого спектрального интервала может быть очень мала, но все же всегда отлична от нуля. Этот факт Планк подчеркивал уже в первых своих работах по теории излучения черного тела. Вследствие этого соотношение Эйнштейна, приравнивающее энергию частицы света, фотона, частоте, соответствующей классической волне, умноженной на h , носит несколько парадоксальный характер, поскольку оно приравнивает одну величину, имеющую вполне определенное значение, другой, не имеющей, строго говоря, никакого определенного значения. Дальнейшее развитие квантовой механики раскрыло истинный смысл этого противоречия.
Итак, можно сказать, что фотонная гипотеза, превосходно объясняющая явления фотоэффекта и комптоновского рассеяния, не дает возможности построить последовательную корпускулярную теорию излучения. Она требует развития более глубокой теории, в которой излучение может обладать и волновым и корпускулярным аспектами, причем связь между ними должна быть установлена так, чтобы выполнялось соотношение Эйнштейна.
5. Первые приложения квантовой гипотезы
Гипотеза квантов, блестяще подтвержденная успехом теории излучения черного тела Планка и теории фотоэффекта Эйнштейна, не замедлила обнаружить свою эффективность и в других областях. Приведем несколько примеров.
Статистическая механика доказала теорему о равнораспределении энергии по степеням свободы. В общем виде ее можно сформулировать следующим образом. В механической системе, обладающей очень большим числом степеней свободы и находящейся в состоянии термодинамического равновесия при постоянной температуре, энергия теплового движения распределяется таким образом, что на каждую степень свободы приходится одинаковое ее количество.
Эта теория, совершенно строго доказанная в рамках классической статистической механики, часто очень хорошо подтверждается на опыте.
В частности, блестяще подтвердились следующие из этой теоремы выводы о средней кинетической энергии атомов и молекул в газах, а также вывод об общем характере зависимости теплоемкости газообразных тел от температуры. И тем не менее, как показало дальнейшее развитие квантовой теории, эта теорема оказывается несправедливой. Это, например, следует уже из того, 'что применение ее к равновесному излучению черного тела, приводит к неправильному закону спектрального распределения плотности энергии черного излучения (закон Рэлея – Джинса). И квантовая гипотеза Планка была введена, в частности, для того, чтобы обойти закон о равнораспределении энергии. Если гипотеза Планка справедлива, то она должна позволить определить также границы применимости классических законов и в других областях физики.
Рассмотрим, например, теорию твердых тел. В однородных твердых телах в отсутствие теплового движения атомы находятся в положении равновесия. При тепловом движении атомы колеблются около своих положений равновесия, причем амплитуда этих колебаний тем больше, чем выше температура тела. Согласно теореме о равнораспределении энергии по степеням свободы все атомы, входящие в состав твердого тела, должны обладать одной и той же средней энергией. Основанные на этой теореме статистической механики расчеты приводят к следующему простому и весьма общему результату: атомная теплоемкость всех твердых тел (иначе говоря, количество тепла, которое надо сообщить одному грамм-атому твердого тела, чтобы поднять его температуру на один градус) приблизительно равна шести калориям. В этом и заключается известный закон Дюлонга и Пти, экспериментально установленный ими еще до получения теоретических результатов. Этот закон так хорошо подтверждался для большинства твердых тел при обычных температурах, что химики даже использовали его для определения молекулярного веса некоторых веществ.
Однако закон Дюлонга и Пти выполняется хотя и очень часто, но не всегда. Некоторые тела, как правило, очень твердые, например алмаз, обладают атомной теплоемкостью, значение которой меньше шести. Кроме того, с понижением температуры для всех твердых тел наступает момент, когда закон Дюлонга и Пти начинает нарушаться и теплоемкость становится меньше своего нормального значения. Квантовая теория очень хорошо объяснила эти отклонения.
В общих чертах это объяснение заключается в следующем. В твердых телах атомы колеблются около своего положения равновесия с частотой, значение которой определяется массой атома и коэффициентом упругости возвращающей силы. Энергия колебаний согласно квантовой гипотезе должна быть по меньшей мере равна кванту энергии, соответствующему частоте этих колебаний. Следовательно, если температура будет настолько низка, что энергия, которую в состоянии получить атом, меньше энергии соответствующего кванта, то этот атом останется неподвижным, и, таким образом, теорема о равнораспределении энергии уже не будет иметь места. Для атомов большинства твердых тел это минимальное значение энергии достаточно мало, так что при нормальных температурах средняя энергия теплового движения оказывается много больше ее и теорема о равнораспределении энергии и, следовательно, закон Дюлонга и Пти выполняются. Однако для очень твердых тел, таких, как, например, алмаз, в которых атомы связаны между собой более жестко, величина соответствующего кванта настолько велика, что уже при нормальных температурах теорема о равнораспределении энергии не имеет места. Ясно также, что с понижением температуры для всех твердых тел рано или поздно должен наступить момент, когда энергии теплового движения будет уже недостаточно для возбуждения всех атомов, и значение теплоемкости упадет по сравнению с его нормальным значением.
Теория теплоемкостей, основанная на квантовой гипотезе, была предложена Эйнштейном и Линдеманом, а затем Дебаем, Борном и Карманом. Эта теория легко объяснила отклонения от закона Дюлонга и Пти и зависимость теплоемкостей от температуры. Более того, теория теплоемкостей оказалась применимой, mutatis mutandis, также и к газообразным телам. В частности, она позволила понять, почему внутренние степени свободы сложных молекул оказываются при низких температурах как бы «замороженными», факт совершенно необъяснимый с точки зрения классической статистической механики.
Все эти результаты были серьезным подтверждением квантовой гипотезы. Основанные на ней расчеты верхней границы непрерывного спектра рентгеновских лучей, возникающих при бомбардировке антикатода ускоренными электронами, также подтвердили ее справедливость.
Все формулы, полученные с помощью квантовой теории, содержат постоянную Планка h . Сравнение их с экспериментальными данными позволяет определить ее численное значение. Полученные всеми этими различными методами значения постоянной Планка оказались чрезвычайно близки между собой.
Итак, к 1913 г. гениальная гипотеза Планка была подтверждена многочисленными фактами. Появившаяся в это время теория атома Бора принесла ей новое, блестящее подтверждение, показав, до какой степени само строение материи связано с существованием квантов.
Глава VI. Атом Бора
1. Спектры и спектральные линии
Невозможно непосредственно изучать внутреннее строение атома, этого микромира невообразимо малых размеров, характеризуемого процессами, недоступными нашему прямому восприятию. Структура атома проявляется только косвенно в явлениях макроскопического масштаба, которые как-то связаны с его внутренним строением.
К числу этих явлений относится, в частности, излучение атомов, возбуждаемых термически или посредством внешнего электрического поля. Это излучение характеризует определенные свойства атома, поскольку оно связано с процессами, протекающими внутри него. Исследование свойств этого излучения позволяет получить некоторые сведения о внутренней структуре атома. Таким образом, изучение и классификация оптических спектров излучения различных атомов приобретает большое значение.
Эта задача, однако, отнюдь не проста, поскольку оптические спектры имеют очень сложный характер и при исследовании невидимой простым глазом инфракрасной и ультрафиолетовой частей спектра необходимо пользоваться сложной специальной аппаратурой. Однако мало-помалу, в результате тщательных и кропотливых исследований ученым удалось установить некоторые общие закономерности в характере спектров и найти эмпирические законы, которым они подчиняются. Прежде всего было замечено, что спектральные линии всех элементов можно разбить на семейства или, как говорят в физике, серии, причем структуры соответствующих серий, относящихся к различным химическим элементам, оказались очень схожи между собой. В пределах едкой серии расположение различных спектральных линий имеет вполне определенный характер и может быть описано простой математической формулой.
В частности, в 1885 г. Бальмеру удалось найти формулу, описывающую распределение спектральных линий видимого спектра атома водорода, получивших название серии Бальмера. Эта формула определяет частоту, соответствующую последовательным линиям серии Бальмера, как функцию целого числа. Исследования излучения, проведенные в невидимой части спектра, показали существование серий, расположенных в ультрафиолетовой (серия Лаймана) и инфракрасной областях (серии Пашена, Бэккета, Пфунда), и в каждой из этих серий формулы, определяющие расположение спектральных линий, совершенно аналогичны формуле, полученной для серии Бальмера.
Подобные же спектральные серии, хотя и обладающие более сложной структурой, имеются не только у водорода, но и у некоторых других элементов, у щелочных металлов. В каждой такой серии расположение линий определяется формулой, аналогичной формуле Бальмера, т е. частота, соответствующая какой-либо линии этой серии, выражается в виде разности двух слагаемых, одно из которых зависит только от номера серии и постоянно для всех линий данной серии, а второе определяется номером линии в этой серии. Такой специфический вид этой формулы и объясняет, в частности, то, что частота некоторой спектральной линии часто оказывается равной сумме частот, соответствующих каким-либо двум другим линиям спектра. Этот факт был установлен экспериментально и позволил Ритцу открыть общий закон, носящий название комбинационного принципа и ставший основой всей современной спектроскопии.
Комбинационный принцип можно сформулировать следующим образом: для каждого атома возможно найти последовательность чисел, называемых спектральными термами этого атома, таких, что частоты всех спектральных линий данного атома будут выражаться в виде разности двух каких-либо спектральных термов. Как аддитивные свойства частот, так и соотношения, определяющие расположение спектральных линий в различных сериях, легко могут быть получены из комбинационного принципа. Справедливость его можно считать неоспоримо подтвержденной многочисленными экспериментальными данными. Но обоснование его связано с разгадкой строения атома и должно объяснить, как и какими именно процессами перестройки внутренней структуры атома вызывается излучение волн с частотой, соответствующей какой-либо спектральной линии. Таким образом, перед теоретической физикой встала важная и неотложная задача теоретического обоснования комбинационного принципа Ритца.
К сожалению, классическая теоретическая физика оказалась совершенно неспособной объяснить полученные эмпирическим путем законы, которым подчиняются атомные спектры. Действительно, для объяснения спектров излучения в рамках классической электродинамики необходимо допустить внутри излучающего вещества наличие колеблющихся заряженных частиц. Например, можно предположить, что атомы вещества содержат электроны, которые в нормальном состоянии, когда нет излучения, неподвижны и находятся в равновесии, но под воздействием каких-либо внешних причин могут начать колебаться около своего положения равновесия. Однако получаемые при этом спектральные законы находятся в вопиющем противоречии с опытными данными. Именно об этом поражении классической физики писал в 1905 г. Анри Пуанкаре: «На первый взгляд изучение спектров приводит нас к мысли о гармониках, с которыми мы уже встречались в акустике. Однако имеется существенное различие: не только волновые числа не кратны одной и той же величине, но мы не находим здесь также никакой аналогии с корнями тех трансцендентных уравнений, к которым так часто приводят задачи математической физики, такие, как, например, задача о колебаниях тела определенной формы или задача о колебаниях Герца в резонаторе или, наконец, задача Фурье об охлаждении твердого тела. Эти законы проще, но они имеют совершенно иную природу… В этом не отдавали себе отчета, и я думаю, что здесь и кроется один из важнейших секретов природы».
«И я думаю, что именно здесь кроется один из важнейших секретов природы». Фраза поистине пророческая, если вспомнить, что она была написана за десять лет до появления теории Бора.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35