Каталог огромен, цена великолепная
Явный же вид этой функции установить с помощью одних только термодинамических методов Вину, к сожалению, не удалось.
Законы Стефана – Больцмана и Вина давали очень ценные сведения о функции спектрального распределения и прекрасно подтвердились экспериментом. Однако они совершенно ничего не могли сказать о конкретном характере распределения. В дальнейшем стало ясно, что с помощью одних только термодинамических методов продвинуться дальше в этом направлении не удастся. Для определения явного вида функции спектрального распределения необходимо было сделать какие-либо конкретные предположения о характере поглощения и испускания излучения – отважиться покинуть твердую почву термодинамики – и вступить на рискованный путь гипотез, касающихся атомной структуры.
На первый взгляд это не трудно было сделать, поскольку электродинамика, в частности, в том виде, который придал ей Лоренц, давала, казалось, вполне удовлетворительную модель процессов испускания и поглощения излучения материей. Оставалось лишь использовать полученные в электронной теории формулы и с их помощью определить точный закон спектрального распределения плотности энергии черного излучения. Но результат оказался совершенно неожиданным. Найденное таким образом спектральное распределение (закон Рэлея) противоречило эксперименту.
Согласно закону Рэлея спектральная плотность энергии излучения должна монотонно возрастать с увеличением частоты. В то же время эксперимент определенно указывал на то, что с увеличением частоты спектральная плотность вначале растет, а затем, начиная с некоторой частоты, соответствующей максимуму плотности, падает, стремясь к нулю, когда частота стремится к бесконечности. Иначе говоря, кривая спектральной плотности энергии имеет колоколообразный вид. Поскольку по закону Рэлея спектральная плотность оказывалась монотонно возрастающей функцией частоты, то отсюда следовал, очевидно, абсолютный вывод; полная плотность энергии черного излучения при всех температурах должна быть бесконечной!
Положение, сложившееся в результате этого расхождения между теорией и экспериментом, было очень серьезным, так как оно свидетельствовало, и многие физики это сознавали, о каком-то существенном недостатке классических теорий, непосредственным следствием которых был закон Рэлея. Легко показать (Джинс), что закон Рэлея можно получить также, применяя общие методы классической статистики к совокупности волн, заключенных внутри замкнутой полости. Все попытки получить формулу для функции спектральной плотности энергии черного излучения, отличную от формулы Рэлея и согласующуюся с экспериментом, окончились неудачей. Стало ясно, что успешно решить проблему излучения черного тела можно только, если в науку о природе будет введен какой-то совершенно новый взгляд на вещи. Честь этого революционного шага принадлежит Максу Планку.
Планк начал свое исследование, представляя вещество в виде совокупности электронных осцилляторов, т е. электронов, колеблющихся около своего положения равновесия под действием некоторой силы, пропорциональной удалению от положения равновесия. Он поставил перед собой задачу исследования теплового равновесия, устанавливающегося в результате обмена энергией между осцилляторами и излучением. Поскольку характер спектрального распределения энергии равновесного излучения не должен зависеть от природы материальных тел, находящихся внутри полости, то полученный при таком рассмотрении результат должен носить общий характер. Применяя к этой задаче методы классической физики, Планк получил, естественно, закон Рэлея. Но, анализируя полученные результаты, ученый заметил, что неправильность закона Рэлея определяется слишком большой ролью, которую в классической картине обмена энергией между осцилляторами и излучением играют высокочастотные осцилляторы. В самом деле, именно преувеличенная роль обмена энергией между равновесным излучением и материальными осцилляторами с высокой частотой приводит к монотонному возрастанию спектральной плотности с ростом частоты и к неправильным экспериментальным следствиям или к логическим абсурдам, о которых мы упомянули выше.
Планку пришла в голову гениальная мысль, что нужно ввести в теорию некоторый новый элемент, совершенно, разумеется, чуждый классическим представлениям, который должен подавить значение осцилляторов высокой частоты, и он выдвинул знаменитый постулат: вещество не может испускать энергию излучения иначе как конечными порциями, пропорциональными частоте этого излучения. Коэффициент пропорциональности при этом есть некоторая универсальная постоянная, имеющая размерность механического действия. Это и есть знаменитая постоянная Планка h .
Введя в игру эту парадоксальную гипотезу, Планк построил теорию теплового равновесия и вывел новый закон распределения спектральной плотности энергии черного излучения, который носит его имя. Поскольку в предположениях Планка ничто не противоречило принципам термодинамики, то полученное им выражение находилось в полном согласии с законом Стефана и законом Вина. Напротив, оно существенно отличалось от формулы Рэлея, совпадая с ней только в области малых частот и высоких температур.
Для высоких частот и низких температур это выражение привело к совершенно другим результатам. Это и понятно. При низких частотах и высоких температурах в энергетическом обмене между веществом и излучением участвует большое число очень маленьких порций энергии, и таким образом с достаточной точностью можно пренебречь дискретным «характером изменения энергии и считать, что она меняется непрерывно. При этом получаются, разумеется, результаты, полностью совпадающие с классическими. В случае же высоких частот и низких температур в обмене энергией участвует небольшое число сравнительно больших порций энергии и дискретность изменения энергии оказывается существенной.
Таким образом, закон спектрального распределения Планка позволяет определить область применимости закона Рэлея, ограничивая ее малыми значениями частот и высокими температурами. В области малых температур и высоких частот закон Рэлея оказывается неприменимым и необходимо пользоваться законом Планка. В противоположность закону Рэлея, который приводил к монотонному росту спектральной плотности энергии черного излучения, закон Планка указывает, что спектральная плотность энергии вначале монотонно растет с частотой, а затем, пройдя через некоторый максимум, монотонно убывает, стремясь к нулю при частоте, стремящейся к бесконечности. Кривая изменения спектральной плотности в зависимости от частоты имеет колоколообразный вид, а полная плотность энергии черного излучения, как легко показать, оказывается конечной. Таким образом, была разрешена одна из серьезнейших трудностей классической физики.
Сравнение закона Планка с результатами экспериментов, точность и число которых непрерывно возрастали, показало, что имеется полное согласие теории Планка с опытом, и позволило с большой точностью определить численное значение постоянной Планка. Выраженное в обычно используемых в физике единицах, оно оказалось чрезвычайно мало. Замечательно, что уже первое значение этой постоянной, найденное из опытов с черным излучением, было определено с большой точностью. В дальнейшем было показано, что численное значение постоянной Планка может быть найдено с помощью многих других экспериментов. И все эти измерения, проводившиеся с все большей и большей точностью, давали для постоянной h значения, очень близкие к тем, которые были найдены Планком из опытов с равновесным излучением.
В то время, когда Планк написал свои основные работы по теории черного излучения, его современники, вероятно, еще не осознали полностью всей важности совершившейся революции.
Введение предложенной Планком гипотезы казалось просто остроумным приемом, позволяющим улучшить теорию интересного, но в общем-то довольно частного явления, а отнюдь не воспринималось как гениальная мысль, которая должна привести к изменению основных концепций классической физики. Но постепенно важность идей Планка становилась все более очевидной. Теоретики стали понимать, что прерывность, вносимая гипотезой квантов, несовместима с основными положениями, лежащими в основе классической физики, и требует их полного пересмотра и можно только восхищаться гениальностью Планка, который, изучая частное физическое явление, оказался в состоянии угадать один из самых основных и наиболее загадочных законов природы. Более сорока лет прошло со дня этого замечательного открытия, но мы все еще далеки от полного понимания значения этого закона и всех его следствий. День, когда была введена постоянная Планка, останется одной из самых замечательных дат в истории развития человеческой мысли.
3. Развитие гипотезы Планка. Квант действия
При построении своей теории равновесного теплового излучения Планк исходил из предположения, что вещество представляет собой совокупность электронных осцилляторов, при посредстве которых и происходит обмен энергией между материей и излучением. Такой осциллятор представляет собой материальную точку, удерживаемую около своего положения равновесия силой. Величина этой силы возрастает пропорционально отклонению от положения равновесия, и осциллятор является механической системой, характеризуемой одним своеобразным свойством. Это свойство заключается в том, что частота колебаний осциллятора не зависит от величины его амплитуды.
Следуя Планку, определим квант энергии осциллятора как величину, равную произведению частоты этого осциллятора на постоянную h , и предположим, что при взаимодействии осциллятора с излучением он может терять или приобретать энергию только скачком, причем величина этого скачка равна соответствующему кванту энергии. Но в таком виде гипотеза квантования энергии оказывается применимой только в случае гармонических осцилляторов. Действительно, в общем случае системы, частота колебаний которой не постоянна, а зависит от амплитуды колебаний, введенное определение кванта энергии становится неоднозначным. Планк понимал необходимость дать более общую формулировку принципа квантования, применимую к любым механическим системам и совпадающую в частном случае гармонического осциллятора с приведенной выше. Он рассуждал следующим образом. Поскольку постоянная имеет размерность действия, т е. размерность произведения энергии на время или количества движения на путь, то ее можно рассматривать как элементарное количество действия, своего рода единицу действия в атомном мире. Рассмотрим теперь механическую систему, совершающую периодическое движение и характеризуемую только одной переменной, скажем, систему, состоящую из одной частицы, совершающей периодическое движение вдоль некоторой, прямой. Для такой системы можно вычислить интеграл действия по Мопертюи, который совпадает с интегралом действия, фигурирующим в принципе наименьшего действия, взятым по полному периоду движения.
Эта величина является определенной характеристикой периодического движения. Требуя, чтобы она равнялась произведению целого числа на постоянную Планка, получаем новую формулировку принципа квантования, применимую к любому одномерному периодическому движению. Легко убедиться, что в частном случае гармонического осциллятора этот новый принцип полностью эквивалентен прежнему принципу квантования энергии. Чтобы придать принципу квантования более общую форму, Планку пришлось отказаться от первоначальной гипотезы квантования энергии и заменить ее гипотезой о квантовании действия.
То, что в общей формулировке принципа квантования фигурирует именно действие, было одновременно и естественным, и несколько странным. Естественным потому, что эта величина играет существенную роль во всей аналитической механике согласно принципу Гамильтона и принципу наименьшего действия. Это в свою очередь привело к тому, что весь аппарат аналитической механики как бы уже был готов воспринять новый принцип квантования. Странным квантование именно действия казалось потому, что с чисто физической точки зрения трудно было понять, как такая величина, как действие, носящая довольно абстрактный характер и не удовлетворяющая непосредственно никаким законам сохранения, может представлять собой характеристику дискретности процессов атомного мира.
Действие всегда выражается в виде произведения некоторых величин, имеющих геометрическую природу, на соответствующие величины, имеющие динамическую природу. Пары этих величин образуют в аналитической механике канонически сопряженные переменные. Так, интеграл, фигурирующий в принципе наименьшего действия Мопертюи, есть криволинейный интеграл от количества движения вдоль траектории. И своего рода дискретность действия, выражаемая введением постоянной Планка, указывает на наличие определенной взаимосвязи между пространством и временем, с одной стороны, и динамическими явлениями, которые мы пытаемся локализовать в этом пространстве и времени, с другой. Эта взаимосвязь носит совершенно новый характер, абсолютно чуждый концепциям классической физики. И в этом заключается глубокое и революционное значение идей, положенных Планком в основу теории равновесного излучения черного тела.
Планк исходил из предположения, что вещество может испускать излучение не непрерывно, а только отдельными конечными порциями. Это, однако, не влечет за собой однозначного предположения о дискретности структуры излучения. Можно построить две различные теории, покоящиеся на двух противоположных предположениях относительно характера поглощения излучения веществом. В основе первой, пожалуй, более последовательной и завоевавшей впоследствии всеобщее признание, лежит предположение о том, что элементы вещества, например электронные осцилляторы, могут находиться только в таких состояниях движения, которые соответствуют квантованным значениям энергии.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Законы Стефана – Больцмана и Вина давали очень ценные сведения о функции спектрального распределения и прекрасно подтвердились экспериментом. Однако они совершенно ничего не могли сказать о конкретном характере распределения. В дальнейшем стало ясно, что с помощью одних только термодинамических методов продвинуться дальше в этом направлении не удастся. Для определения явного вида функции спектрального распределения необходимо было сделать какие-либо конкретные предположения о характере поглощения и испускания излучения – отважиться покинуть твердую почву термодинамики – и вступить на рискованный путь гипотез, касающихся атомной структуры.
На первый взгляд это не трудно было сделать, поскольку электродинамика, в частности, в том виде, который придал ей Лоренц, давала, казалось, вполне удовлетворительную модель процессов испускания и поглощения излучения материей. Оставалось лишь использовать полученные в электронной теории формулы и с их помощью определить точный закон спектрального распределения плотности энергии черного излучения. Но результат оказался совершенно неожиданным. Найденное таким образом спектральное распределение (закон Рэлея) противоречило эксперименту.
Согласно закону Рэлея спектральная плотность энергии излучения должна монотонно возрастать с увеличением частоты. В то же время эксперимент определенно указывал на то, что с увеличением частоты спектральная плотность вначале растет, а затем, начиная с некоторой частоты, соответствующей максимуму плотности, падает, стремясь к нулю, когда частота стремится к бесконечности. Иначе говоря, кривая спектральной плотности энергии имеет колоколообразный вид. Поскольку по закону Рэлея спектральная плотность оказывалась монотонно возрастающей функцией частоты, то отсюда следовал, очевидно, абсолютный вывод; полная плотность энергии черного излучения при всех температурах должна быть бесконечной!
Положение, сложившееся в результате этого расхождения между теорией и экспериментом, было очень серьезным, так как оно свидетельствовало, и многие физики это сознавали, о каком-то существенном недостатке классических теорий, непосредственным следствием которых был закон Рэлея. Легко показать (Джинс), что закон Рэлея можно получить также, применяя общие методы классической статистики к совокупности волн, заключенных внутри замкнутой полости. Все попытки получить формулу для функции спектральной плотности энергии черного излучения, отличную от формулы Рэлея и согласующуюся с экспериментом, окончились неудачей. Стало ясно, что успешно решить проблему излучения черного тела можно только, если в науку о природе будет введен какой-то совершенно новый взгляд на вещи. Честь этого революционного шага принадлежит Максу Планку.
Планк начал свое исследование, представляя вещество в виде совокупности электронных осцилляторов, т е. электронов, колеблющихся около своего положения равновесия под действием некоторой силы, пропорциональной удалению от положения равновесия. Он поставил перед собой задачу исследования теплового равновесия, устанавливающегося в результате обмена энергией между осцилляторами и излучением. Поскольку характер спектрального распределения энергии равновесного излучения не должен зависеть от природы материальных тел, находящихся внутри полости, то полученный при таком рассмотрении результат должен носить общий характер. Применяя к этой задаче методы классической физики, Планк получил, естественно, закон Рэлея. Но, анализируя полученные результаты, ученый заметил, что неправильность закона Рэлея определяется слишком большой ролью, которую в классической картине обмена энергией между осцилляторами и излучением играют высокочастотные осцилляторы. В самом деле, именно преувеличенная роль обмена энергией между равновесным излучением и материальными осцилляторами с высокой частотой приводит к монотонному возрастанию спектральной плотности с ростом частоты и к неправильным экспериментальным следствиям или к логическим абсурдам, о которых мы упомянули выше.
Планку пришла в голову гениальная мысль, что нужно ввести в теорию некоторый новый элемент, совершенно, разумеется, чуждый классическим представлениям, который должен подавить значение осцилляторов высокой частоты, и он выдвинул знаменитый постулат: вещество не может испускать энергию излучения иначе как конечными порциями, пропорциональными частоте этого излучения. Коэффициент пропорциональности при этом есть некоторая универсальная постоянная, имеющая размерность механического действия. Это и есть знаменитая постоянная Планка h .
Введя в игру эту парадоксальную гипотезу, Планк построил теорию теплового равновесия и вывел новый закон распределения спектральной плотности энергии черного излучения, который носит его имя. Поскольку в предположениях Планка ничто не противоречило принципам термодинамики, то полученное им выражение находилось в полном согласии с законом Стефана и законом Вина. Напротив, оно существенно отличалось от формулы Рэлея, совпадая с ней только в области малых частот и высоких температур.
Для высоких частот и низких температур это выражение привело к совершенно другим результатам. Это и понятно. При низких частотах и высоких температурах в энергетическом обмене между веществом и излучением участвует большое число очень маленьких порций энергии, и таким образом с достаточной точностью можно пренебречь дискретным «характером изменения энергии и считать, что она меняется непрерывно. При этом получаются, разумеется, результаты, полностью совпадающие с классическими. В случае же высоких частот и низких температур в обмене энергией участвует небольшое число сравнительно больших порций энергии и дискретность изменения энергии оказывается существенной.
Таким образом, закон спектрального распределения Планка позволяет определить область применимости закона Рэлея, ограничивая ее малыми значениями частот и высокими температурами. В области малых температур и высоких частот закон Рэлея оказывается неприменимым и необходимо пользоваться законом Планка. В противоположность закону Рэлея, который приводил к монотонному росту спектральной плотности энергии черного излучения, закон Планка указывает, что спектральная плотность энергии вначале монотонно растет с частотой, а затем, пройдя через некоторый максимум, монотонно убывает, стремясь к нулю при частоте, стремящейся к бесконечности. Кривая изменения спектральной плотности в зависимости от частоты имеет колоколообразный вид, а полная плотность энергии черного излучения, как легко показать, оказывается конечной. Таким образом, была разрешена одна из серьезнейших трудностей классической физики.
Сравнение закона Планка с результатами экспериментов, точность и число которых непрерывно возрастали, показало, что имеется полное согласие теории Планка с опытом, и позволило с большой точностью определить численное значение постоянной Планка. Выраженное в обычно используемых в физике единицах, оно оказалось чрезвычайно мало. Замечательно, что уже первое значение этой постоянной, найденное из опытов с черным излучением, было определено с большой точностью. В дальнейшем было показано, что численное значение постоянной Планка может быть найдено с помощью многих других экспериментов. И все эти измерения, проводившиеся с все большей и большей точностью, давали для постоянной h значения, очень близкие к тем, которые были найдены Планком из опытов с равновесным излучением.
В то время, когда Планк написал свои основные работы по теории черного излучения, его современники, вероятно, еще не осознали полностью всей важности совершившейся революции.
Введение предложенной Планком гипотезы казалось просто остроумным приемом, позволяющим улучшить теорию интересного, но в общем-то довольно частного явления, а отнюдь не воспринималось как гениальная мысль, которая должна привести к изменению основных концепций классической физики. Но постепенно важность идей Планка становилась все более очевидной. Теоретики стали понимать, что прерывность, вносимая гипотезой квантов, несовместима с основными положениями, лежащими в основе классической физики, и требует их полного пересмотра и можно только восхищаться гениальностью Планка, который, изучая частное физическое явление, оказался в состоянии угадать один из самых основных и наиболее загадочных законов природы. Более сорока лет прошло со дня этого замечательного открытия, но мы все еще далеки от полного понимания значения этого закона и всех его следствий. День, когда была введена постоянная Планка, останется одной из самых замечательных дат в истории развития человеческой мысли.
3. Развитие гипотезы Планка. Квант действия
При построении своей теории равновесного теплового излучения Планк исходил из предположения, что вещество представляет собой совокупность электронных осцилляторов, при посредстве которых и происходит обмен энергией между материей и излучением. Такой осциллятор представляет собой материальную точку, удерживаемую около своего положения равновесия силой. Величина этой силы возрастает пропорционально отклонению от положения равновесия, и осциллятор является механической системой, характеризуемой одним своеобразным свойством. Это свойство заключается в том, что частота колебаний осциллятора не зависит от величины его амплитуды.
Следуя Планку, определим квант энергии осциллятора как величину, равную произведению частоты этого осциллятора на постоянную h , и предположим, что при взаимодействии осциллятора с излучением он может терять или приобретать энергию только скачком, причем величина этого скачка равна соответствующему кванту энергии. Но в таком виде гипотеза квантования энергии оказывается применимой только в случае гармонических осцилляторов. Действительно, в общем случае системы, частота колебаний которой не постоянна, а зависит от амплитуды колебаний, введенное определение кванта энергии становится неоднозначным. Планк понимал необходимость дать более общую формулировку принципа квантования, применимую к любым механическим системам и совпадающую в частном случае гармонического осциллятора с приведенной выше. Он рассуждал следующим образом. Поскольку постоянная имеет размерность действия, т е. размерность произведения энергии на время или количества движения на путь, то ее можно рассматривать как элементарное количество действия, своего рода единицу действия в атомном мире. Рассмотрим теперь механическую систему, совершающую периодическое движение и характеризуемую только одной переменной, скажем, систему, состоящую из одной частицы, совершающей периодическое движение вдоль некоторой, прямой. Для такой системы можно вычислить интеграл действия по Мопертюи, который совпадает с интегралом действия, фигурирующим в принципе наименьшего действия, взятым по полному периоду движения.
Эта величина является определенной характеристикой периодического движения. Требуя, чтобы она равнялась произведению целого числа на постоянную Планка, получаем новую формулировку принципа квантования, применимую к любому одномерному периодическому движению. Легко убедиться, что в частном случае гармонического осциллятора этот новый принцип полностью эквивалентен прежнему принципу квантования энергии. Чтобы придать принципу квантования более общую форму, Планку пришлось отказаться от первоначальной гипотезы квантования энергии и заменить ее гипотезой о квантовании действия.
То, что в общей формулировке принципа квантования фигурирует именно действие, было одновременно и естественным, и несколько странным. Естественным потому, что эта величина играет существенную роль во всей аналитической механике согласно принципу Гамильтона и принципу наименьшего действия. Это в свою очередь привело к тому, что весь аппарат аналитической механики как бы уже был готов воспринять новый принцип квантования. Странным квантование именно действия казалось потому, что с чисто физической точки зрения трудно было понять, как такая величина, как действие, носящая довольно абстрактный характер и не удовлетворяющая непосредственно никаким законам сохранения, может представлять собой характеристику дискретности процессов атомного мира.
Действие всегда выражается в виде произведения некоторых величин, имеющих геометрическую природу, на соответствующие величины, имеющие динамическую природу. Пары этих величин образуют в аналитической механике канонически сопряженные переменные. Так, интеграл, фигурирующий в принципе наименьшего действия Мопертюи, есть криволинейный интеграл от количества движения вдоль траектории. И своего рода дискретность действия, выражаемая введением постоянной Планка, указывает на наличие определенной взаимосвязи между пространством и временем, с одной стороны, и динамическими явлениями, которые мы пытаемся локализовать в этом пространстве и времени, с другой. Эта взаимосвязь носит совершенно новый характер, абсолютно чуждый концепциям классической физики. И в этом заключается глубокое и революционное значение идей, положенных Планком в основу теории равновесного излучения черного тела.
Планк исходил из предположения, что вещество может испускать излучение не непрерывно, а только отдельными конечными порциями. Это, однако, не влечет за собой однозначного предположения о дискретности структуры излучения. Можно построить две различные теории, покоящиеся на двух противоположных предположениях относительно характера поглощения излучения веществом. В основе первой, пожалуй, более последовательной и завоевавшей впоследствии всеобщее признание, лежит предположение о том, что элементы вещества, например электронные осцилляторы, могут находиться только в таких состояниях движения, которые соответствуют квантованным значениям энергии.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35