https://wodolei.ru/catalog/smesiteli/dlya_kuhni/
Так, допускалось, что существование эфира можно было бы установить, если бы удалось доказать, что какой-то луч света, движущийся быстрее, чем другой луч света, определенным образом меняет свои характеристики.
Известен следующий факт: высота звука возрастает или понижается в зависимости от того, приближается слушатель к его источнику или удаляется от него. Это так называемый принцип Доплера; теоретически его считали применимым и к свету. Он означает, что быстро приближающийся или удаляющийся предмет должен менять свой цвет – подобно тому, как гудок приближающегося или удаляющегося паровоза меняет свою высоту. Но из-за особого устройства глаза и скорости его восприятия невозможно ожидать, что глаз заметит перемену цвета, даже если она действительно имеет место.
Для установления факта изменения цвета необходимо было использовать спектроскоп, т.е. разложить луч света и наблюдать каждый цвет в отдельности. Но эти эксперименты не дали положительных результатов, так что доказать с их помощью существование эфира не удалось.
И вот, чтобы раз и навсегда решить вопрос о том, существует эфир или нет, американские ученые Майкельсон и Морли в середине 80-х годов прошлого столетия предприняли серию экспериментов с прибором собственного изобретения.
Прибор помещался на каменной плитке, укрепленной на деревянном поплавке, который вращался в сосуде со ртутью и совершал один оборот за шесть минут. Луч света из особой лампы падал на зеркала, прикрепленные к вращающемуся поплавку; этот свет частью проходил сквозь них, а частью ими отражался, причем одна половина лучей шла по направлению движения Земли, а другая – под прямым углом к нему. Это значит, что в соответствии с планом эксперимента половина луча двигалась с нормальной скоростью света, а другая половина – со скоростью света плюс скорость вращения Земли. Опять-таки согласно плана эксперимента, при соединении расщепленного луча должны были обнаружиться определенные световые феномены, возникающие вследствие различия скоростей и показывающие относительное движение между Землей и эфиром. Таким образом, косвенно удалось бы доказать существование эфира.
Наблюдения производились в течение длительного времени, как днем, так и ночью; но обнаружить какие-либо явления, подтверждающие существование эфира, так и не удалось.
С точки зрения первоначальной задачи пришлось признать, что эксперимент окончился неудачей. Однако он раскрыл другое явление (гораздо более важное, чем то, которое пытался установить), а именно: скорость света увеличить невозможно. Луч света, двигавшийся вместе с Землей, ничем не отличался от луча света, двигавшегося под прямым углом к движению Земли по орбите.
Пришлось признать как закон, что скорость света представляет собой постоянную и максимальную величину, увеличить которую невозможно. Это, в свою очередь, объясняло, почему к явлениям света не применим принцип Доплера. Кроме того, было установлено, что общий закон сложения скоростей, который является основой механики, к скорости света не применим.
В своей книге об относительности проф. Эйнштейн объясняет, что если мы представим себе поезд, несущийся со скоростью 30 км в секунду, т.е. со скоростью движения Земли, и луч света будет догонять или встречать его, то сложения скоростей в этом случае не произойдет. Скорость света не возрастет за счет прибавления к ней скорости поезда, и не уменьшится за счет вычитания из нее скорости поезда.
В то же время было установлено, что никакие существующие инструменты или средства наблюдения не могут перехватить движущийся луч. Иными словами, нельзя уловить конец луча, который еще не достиг своего назначения. Теоретически мы можем говорить о лучах, которые еще не достигли некоторого пункта; но на практике мы не способны их наблюдать. Следовательно, для нас с нашими средствами наблюдения распространение света оказывается мгновенным.
Одновременно физики, которые анализировали результаты эксперимента Майкельсона-Морли, объясняли его неудачу присутствием новых и неизвестных явлений, порожденных высокими скоростями.
Первые попытки разрешить этот вопрос были сделаны Лоренцом и Фицджеральдом. Опыт не мог удаться, – так сформулировал свои положения Лоренц, – ибо каждое тело, движущееся в эфире, само подвергается деформации, а именно: оно сокращается в направлении движения (для наблюдателя, пребывающего в покое). Основывая свои рассуждения на фундаментальных законах механики и физики, Лоренц с помощью ряда математических построений показал, что установка Майкельсона и Морли подвергалась сокращению и размеры этого сокращения как раз таковы, чтобы уравновесить смещение световых волн, которое соответствовало их направлению в пространстве, и что это аннулировало различия в скорости двух лучей.
Выводы Лоренца о предполагаемом смещении и сокращении движущегося тела, в свою очередь, дали толчок многим объяснениям; одно из них было выдвинуто с точки зрения специального принципа относительности Эйнштейна. Но это уже область новой физики.
Старая физика была неразрывно связана с теорией колебаний.
Новой теорией, которая появилась, чтобы заменить старую теорию колебаний, стала теория корпускулярного строения света и электричества, рассматриваемых как независимо существующая материя, состоящая из квантов.
Это новое учение, говорит Хвольсон, означает возвращение к теории излучений Ньютона, хотя и в значительно измененном варианте. Оно далеко еще от завершения, и важнейшая его часть, понятие кванта, до сих пор остается не определенным. Что такое квант – этого новая физика определить не может.
Теория корпускулярного строения света и электричества совершенно переменила воззрения на электричество и световые явления. Наука перестала видеть главную причину электрических явлений в особых состояниях эфира и вернулась к старой теории, согласно которой электричество – это особая субстанция, обладающая реальным существованием.
То же самое произошло и со светом. Согласно современным теориям, свет – это поток мельчайших частиц, несущихся в пространстве со скоростью 300 000 км в секунду. Это не корпускулы Ньютона, а особого рода материя-энергия, создаваемая электромагнитными вихрями.
Материальность светового потока была установлена в опытах московского профессора Лебедева. Лебедев доказал, что свет имеет вес, т.е. падая на тела, он оказывает на них механическое давление. Характерно, что, начиная свои эксперименты по определению светового давления, Лебедев исходил из теории колебаний эфира. Этот случай показывает, как старая физика сама себя опровергла.
Открытие Лебедева оказалось очень важным для астрономии; оно объяснило, например, некоторые явления, наблюдавшиеся при прохождении хвоста кометы около Солнца. Но особую важность оно приобрело для физики, поскольку предоставило новые доводы в пользу единства строения лучистой энергии.
Невозможность доказать существование эфира, установление абсолютной и постоянной скорости света, новые теории света и электричества и, прежде всего, исследование строения атома – все это указывало на самые интересные линии развития новой физики.
Из этого направления физики развилась еще одна дисциплина новой физики, получившая название математической физики. Согласно данному ей определению, математическая физика начинается с какого-то факта, подтвержденного опытом и выражающего некоторую упорядоченную связь между явлениями. Она облекает эту связь в математическую форму, после чего как бы переходит в чистую математику и начинает исследовать при помощи математического анализа те следствия, которые вытекают из основных положений (Хвольсон).
Таким образом, представляется, что успех или неуспех выводов математической физики зависит от трех факторов: во-первых, от правильности или неправильности определения исходного факта; во-вторых, от правильности его математического выражения; и в третьих, от точности последующего математического анализа.
Было время, когда значение математической физики сильно преувеличивали, – пишет Хвольсон. – Ожидалось, что именно математическая физика определит принципиальный курс в развитии физики, но этого не случилось. В выводах математической физики налицо множество существенных ошибок. Во-первых, они совпадают с результатами прямого наблюдения обычно только в первом, грубом приближении. Причина этого та, что предпосылки математической физики можно считать достаточно точными лишь в самых узких пределах; кроме того, эти предпосылки не принимают во внимание целый ряд сопутствующих обстоятельств, влиянием которых вне этих узких предпосылок нельзя пренебрегать. Поэтому выводы математической физики относятся только к идеальным случаям, которые невозможно осуществить на практике и которые зачастую очень далеки от действительности.
И далее:
К этому необходимо добавить, что методы математической физики позволяют решать специальные проблемы лишь в самых простых случаях. Но практическая физика не в состоянии ограничиваться такими случаями; ей то и дело приходится сталкиваться с проблемами, которые математическая физика разрешить не может. Более того, результаты выводов математической физики бывают настолько сложными, что практическое их применение оказывается невозможным.
* * *
В дополнение к сказанному нужно упомянуть еще одну характерную особенность математической физики: как правило, ее выводы можно сформулировать только математически; они теряют всякий смысл, всякое значение, если попытаться истолковать их на языке фактов.
Новая физика, развившаяся из математической физики, обладает многими ее чертами. Так, теория относительности Эйнштейна является новой главой новой физики, возникшей из физики математической, но неверно отождествлять теорию относительности с новой физикой, как это делают некоторые последователи Эйнштейна. Новая физика может существовать и без теории относительности. Но с точки зрения новой модели вселенной теория относительности представляет для нас большой интерес, потому что она, помимо прочего, имеет дело с фундаментальным вопросом о форме мира.
Существует огромная литература, посвященная изложению, объяснению, популяризации, критике и разработке принципов Эйнштейна; но по причине тесной связи между теорией относительности и математической физикой, выводы из этой теории трудно сформулировать логически. Необходимо принять во внимание и то, что ни самому Эйнштейну, ни кому-либо из его многочисленных последователей и толкователей не удалось объяснить смысл и сущность его теории ясным и понятным образом.
Одна из главных причин этого указана Бертраном Расселом в его популярной книжке «Азбука относительности». Он пишет, что название «теория относительности» вводит читателей в заблуждение, что Эйнштейну приписывают тенденцию доказать, что "все относительно" тогда как на самом деле он стремится открыть и установить то, что не является относительным. Было бы еще правильнее сказать, что Эйнштейн старается установить взаимоотношения между относительным и тем, что не является относительным.
* * *
Далее Хвольсон пишет в своем «Курсе физики»:
...
Главное место в теории относительности Эйнштейна занимает совершенно новая и, на первый взгляд, непонятная концепция времени. Чтобы привыкнуть к ней, необходимы определенные усилия и продолжительная работа над собой. Но бесконечно труднее принять многочисленные следствия, вытекающие из принципа относительности и оказывающие влияние на все без исключения области физики. Многие из этих следствий явно противоречат тому, что принято (хотя и не всегда справедливо) называть «здравым смыслом». Некоторые такие следствия можно назвать парадоксами нового учения.
Идеи Эйнштейна о времени можно сформулировать следующим образом:
...
Каждая из двух систем, движущихся друг относительно друга, имеет свое собственное время, воспринимаемое и измеряемое наблюдателем, движущимся вместе с одной из систем.
...
Понятия одновременности в общем смысле не существует. Два события, которые происходят в разных системах, могут казаться одновременными наблюдателю в каком-то одном пункте, а для наблюдателя в другом пункте они могут происходить в разное время. Возможно, для первого наблюдателя одно и то же явление произойдет раньше, а для второго – позже (Хвольсон).
Далее Хвольсон выделяет следующие из идей Эйнштейна:
Эфира не существует.
Понятие пространства, взятое в отдельности, лишено смысла. Только сосуществование пространства и времени реально.
Энергия обладает инертной массой. Энергия аналогична материи; имеет место преобразование того, что мы называем масой осязаемой материи, в массу энергии, и наоборот.
Необходимо отличать геометрическую форму тела от его кинетической формы.
Последнее положение указывает на определенную связь между теорией Эйнштейна и положениями Лоренца и Фицджеральда относительно сокращения движущихся тел. Эйнштейн принимает это положение, хотя говорит, что основывает его на других принципах, нежели Лоренц и Фицджеральд, а именно: на специальном принципе относительности. Вместе с тем, теория относительности принимает, как необходимое основание, теорию сокращения тел, выводимую не из фактов, а из преобразований Лоренца.
Пользуясь исключительно преобразованиями Лоренца, Эйнштейн утверждает, что жесткий стержень, движущийся в направлении своей длины, будет короче того же стержня, пребывающего в состоянии покоя; чем быстрее движется такой стержень, тем короче он становится. Стержень, движущийся со скоростью света, утрачивает третье измерение и превращается в свое собственное свечение.
Сам Лоренц утверждал, что, когда электрон движется со скоростью света, он исчезает.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85