https://wodolei.ru/catalog/accessories/vedra-dlya-musora/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Но стоит лишь осветить селеновую пластину, как сопротивление её резко уменьшается, а ток возрастает. Чем больше будет освещённость пластины, тем меньше её сопротивление и тем сильнее ток в цепи.
Научное объяснение фотосопротивления было дано много лет спустя после его открытия. Сделал это наш выдающийся соотечественник Александр Григорьевич Столетов.
В наше время любой юный техник без особого труда может сделать фототранзистор. Принцип действия фототранзистора основан на чувствительности к свету полупроводникового р — и перехода. Кванты света, падая на переход, высвобождают в нём электроны. Чем больше световой энергии попадает на полупроводник, тем больше высвобождается электронов. В результате появляется дополнительный электрический ток через эмиттерный переход, управляющий сопротивлением транзистора. Для изготовления фоторезистора необходим исправный транзистор МП40 или МП42 со статическим коэффициентом передачи тока h 2 i3 = 40… 100 и начальным током коллектора не более 20 мкА. Лобзиком осторожно спиливают крышку транзистора и тщательно удаляют с кристалла попавшие на него металлические опилки. Если эти операции выполнены аккуратно, транзистор не изменит параметров. Убедившись в этом, вы можете считать, что справились с изготовлением фоторезистора.
Окончательно проверяют работоспособность самодельного фоторезистора авометром (рис. 51). Эмит — терный вывод фототранзистора присоедините к тому зажиму прибора, который соединён с плюсовым полюсом внутренней батареи. Базовый вывод оставьте свободным.
Когда на фототранзистор не попадает свет (прикройте его плотной бумагой), авометр должен показывать сопротивление более 50 кОм.
Теперь поднесите к фототранзистору включённую настольную лампу так, чтобы ещё лучи падали на кристалл под прямым углом со стороны эмиттерного вывода. Стрелка омметра должна тут же отметить резкое уменьшение проходного сопротивления. На расстоянии 5… 10 см от лампы проходное сопротивление коллектор — эмиттер фототранзистора должно упасть до 100…200 Ом.
Поверните фототранзистор на 90° по отношению к его оси. Сопротивление увеличится в 5… 10 раз. О причине можно легко догадаться — лучи света стали теперь попадать только на часть кристалла. Уменьшилась поверхность облучения — уменьшилась и чувствительность фотоэлемента. Отсюда вывод: совершенно небезразлично, как устанавливать фототранзистор по отношению к лучу света. Если этого не учитывать, изготовленные вами фотореле будут работать ненадёжно. Конечно, самодельные фотоприёмники менее чувствительны и надёжны по сравнению с выпускаемыми промышленностью.

Рис. 51 Самодельный фототранзистор
Моделирование светочувствительных устройств из радиокубиков. Из радиокубиков можно собрать несколько таких устройств и проанализировать их работу. Перечислим самые простые из них: фоторезистор в цепи постоянного тока: фотореле с усилителем на транзисторе: автомат включения освещения: автомат ночной сш нализации.
Фоторезистор в цепи постоянного тока — устройство, составленное из последовательно включённых фоторезистора ФСК — 1, измерительного прибора — миллиамперметра и источника питания, даёт возможность продемонстрировать свойство полупроводников (фоторезисторов) изменять сопротивление электрическому току под воздействием на них света.
При освещении фоторезистора светом сопротивление ею уменьшается, ток в цепи увеличивается, что отмечает миллиамперметр.
Фотореле с усилителем на одном транзисторе (рис. 52, а). Простая схема фотореле может быть применена при построении системы, управляемой светом. Фотореле выполнено на транзисторе VT1, который играет роль усилителя постоянного тока. Нагрузкой служит обмотка электромагнитного реле К1. При нажатии на кнопку SB1 реле не срабатывает, если фоторезистор затемнён. Если на фоторезистор направить свет, то его сопротивление уменьшится, транзистор откроется и реле сработает. Сопротивление токоограничительного резистора R1 зависит от параметров выбранной лампы.
Фотореле с усилителем на двух транзисторах (рис. 52, б) содержит двухступенный усилитель постоянного тока. Нагрузкой транзистора VT2 является обмотка реле. Это фотореле более чувствительно к малым световым потокам.
Чувствительное фоторел e с усилителем на транзисторах (рис. 52. в) собрано на двух транзисторах, которые работают в усилителе постоянного тока. Фотореле чувствительно к малым световым сигналам.

Рис. 52. Фотореле с усилителями на транзисторах
Автомат включения освещения (рис. 53) позволяет автоматически включать освещение при наступлении темноты. Исполнительное устройство подключают к контактам реле.
Автомат ночной сигнализации (рис. 54) представляет собой генератор световых сигнальных импульсов. Он начинает работать только при наступлении темноты или при затемнении фоторезистора. Длительность сигналов можно изменять подборкой конденсатора в пределах 5… 100 мкФ.

Рис. 53. Автомат включения освещения

Рис. 54. Автомат ночной сигнализации
Некоторые из рассмотренных устройств можно использовать в роботе, в его светочувствительном блоке.
ЗДРАВСТВУЙ, МИКРОЭЛЕКТРОНИКА!
Современная микроэлектронная техника позволяет создать малогабаритные и высокочувствительные системы зрения самого различного назначения.
На рис. 55 приведена принципиальная схема фотореле с цифровым логическим элементом. Датчиком служит фотодиод BD1, который подключён непосредственно к входам элемента DD1.1 (К155ЛБЗ).
Когда фотодиод освещён, его сопротивление мало и напряжение на выходе инвертора DD1.1 близко к нулю. На выходе элемента — высокий уровень, который закрывает транзистор VT1. Реле К1 отключается.
Стоит прервать световой поток, как сопротивление фотодиода увеличится, транзистор откроется, реле включится.
Порядок работы фотореле можно изменить — заставить реле срабатывать при освещении. Для этого вместо одного следует включить последовательно два инвертора.

Рис. 55. Микроэлектронное реле
Микроэлектронная система обнаружения пламени. В условиях современных роботизированных цехов особое значение имеют системы предупреждения о пожарной опасности. Ими можно оснастить самих роботов. Применение для обнаружения пламени темпера — турно — световых датчиков в ряде случаев оказывается нецелесообразным, так как они срабатывают не только при возникновении или исчезновении пламени, но и по разным другим причинам, например при случайном увеличении освещённости, повышении температуры. Поэтому при использовании таких датчиков необходимо принимать зачастую очень сложные меры, чтобы исключить ложные срабатывания. Очевидно, что для чёткого обнаружения пламени необходимы датчики, действие которых основано на изменении факторов, непосредственно характеризующих пламя.
Для открытого пламени, как показывает практика, наиболее характерна пульсация его инфракрасного и ультрафиолетового излучения — интенсивность различных видов излучения пламени не остаётся постоянной, а изменяется во времени. Явление пульсации, обусювленное физическими процессами, происходящими при горении, можно наблюдать, в частности, на примере обычной газовой юрелки.
Как показали опыты, пульсация характеристик пламени многих горючих материалов, в том числе при искусственном распылении топлива (например, в топках котлов и других теплоустановок), происходит с частотой, лежащей в пределах 15…30 Гц.

7. ОСЯЗАНИЕ РОБОТОВ
Создание по — настоящему разумного робота невозможно без датчиков, подобных органам чувств человека. О состоянии собственного тела мы можем судить и с закрытыми глазами — от нервных центров в мозт передаётся вся нужная информация. Системой «очувствления» должны обладать и самоуправляемые роботы. Англизируя информацию о состоянии внешней среды и своём собственном, ЭВМ принимает решение о составе и последовательности действий.
Первым чувством, которому «научили» роботов, было осязание. Датчики давления, температуры, влажности, встроенные в пальцы руки, позволяют роботу определять, есть ли рядом нужный предмет, каковы его размеры, форма, температура поверхности. Осязательными (тактильными) датчиками оснащены роботы третьего поколения. Движущиеся, ходячие роботы оповещаются о приближении к препятствию специальными антеннами.
Роботы, которые предназначены для сборки, должны уметь распознавать отдельные детали. В последнее время появилась возможность создания искусственных органов осязания, заменяющих пальцы рук человека. В качестве искусственных, ощупывающих окружающие предметы органов осязания используются ёмкостные, индукционные, температурные, радиоактивные и ультразвуковые щупы — датчики, которые способны превращать воздействия, получаемые ими от ощупываемого предмета, в определённые электрические сигналы.
Среди наиболее простых и наиболее распространённых датчиков внешней информации можно отметить так называемые контактные датчики. На концах схвата — руки робота устанавливают специальные выключатели, которые фиксируют факт прикосновения к детали или станку и посылают импульс в мозг робота. Десяток таких выключателей, расположенных не только внутри пальцев схвата, но и на наружной его поверхности (сверху, снизу, справа и слева), помогают роботу «на ощупь» определить положение детали или возникшего препятствия.
Однако человек, манипулируя предметом, фиксирует не только факт соприкосновения, но и ощущает давление руки на предмет через кожу и таким образом может регулировать усилие сжатия соответственно массе и прочности предмета. Такой датчик представляет собой, например, слой электропроводящего вспененного полиуретана, заключённого между тонкими металлическими пластинками. В зависимости от давления расстояние между пластинами меняется. Соответственно изменяется электрическое сопротивление цепи. Эти свойства искусственной чувствительной кожи уже используют при протезировании.
В качестве весьма грубого примера конструкции схвата манипулятора, ощущающего предметы, рассмотрим устройство манипулятора Эрнста (рис. 56), собранного им в конце 1961 года. Манипулятор оснащён двумя группами датчиков. Одну образуют датчики, установленные во всех подвижных сочленениях. Они посылают информацию о том, как механизм выполняет сигналы, управляющие движением всех сочленений руки. Это датчики внутренней обратной связи. Система непрерывно сравнивает те положения руки, которые задаёт управляющая машина, с положениями, которые рука занимает в действительности, и в соответствии с результатами этого сравнения ЭЦВМ непрерывно генерирует сигналы управления, устраняющие рассогласование, заставляя механическую руку занимать нужные положения и нужным образом менять их.
Вторая группа датчиков установлена на схвате. Именно эти датчики связывают руку с внешним миром. Схват, как обычно состоит из двух пальцев. Верхняя, нижняя и передняя плоскости каждого пальца оснащены контактными датчиками, работающими в двоичном коде: включён — выключен. Эти датчики сигнализируют о том, что рука наткнулась на объект нерабочим участком. На внутренней и рабочей передней плоскостях каждого пальца расположено ещё по восемь датчиков. Они работают уже не в двоичном коде, а генерируют сигналы, уровень которых пропорционален силе нажатия на датчик. Шесть из них расположены на рабочих плоскостях схвата и информируют о том, какие части плоскостей участвуют в схвате и с какой силой пальцы сжимают объект.

Рис. 56. Манипулятор Эрнста:
1 — датчик, определяющий положение объекта между пальцами схвата; 2 — датчик сигнализации соприкосновения с нерабочими участками пальцев; 3 — датчик, сигнализирующий о расположении схватываемого объекта; 4 — фотодиод, реагирующий на тень объекта; 5 — датчики, сигнализирующие о соприкосновении с объектом; 6 — датчик, включающийся при соприкосновении руки со столом
Два датчика, расположенные на передних плоскостях пальцев, регистрируют силу сопротивления движению схвата со стороны объекта. В случае, если рука с ним сталкивается в процессе движения, эти датчики позволяют получить информацию о протяжённости и размерах этого объекта.
Таким образом, схват — его рабочие и нерабочие поверхности — снабжён подобием осязания и очувствлен по силе сжатия. Кроме того, на передних поверхностях пальцев между датчиками осязания помещено по глазу — фотодиоду, реагирующему на затенение: когда рука приближается к какому — либо объекту, но ещё не коснулась его, в машину поступает сигнал о приближении и о необходимости снизить скорость перемещения. ЭЦВМ принимает, обрабатывает и использует принятую информацию при реализации заданной программы.
Манипулятор Эрнста работает как робот с «завязанными глазами». Датчики, которыми он оснащён, собирают информацию вслепую — осязанием, «на ощупь». Он не может отделить процесс сбора информации от процесса движения, сначала получить представление о ситуации, сложившейся во внешнем мире, и только затем начать действовать. Именно поэтому он вынужден искать их один за другим. А настоящий робот должен иметь такие органы чувств, которые дали бы ему возможность предпослать движению сбор информации.
КОНСТРУИРОВАНИЕ СЕНСОРНЫХ УСТРОЙСТВ
Как мы уже говорили, неотъемлемой частью систем осязания роботов являются сенсорные устройства, вызывающие срабатывание механизмов ориентации и захвата предметов. Контактное управление все чаще находит сейчас применение в разных областях. В обыденной жизни можно встретиться с этим способом управления в лифте. В современных лифтах вместо обычных кнопок устанавливаются на панели сенсорные контакты — неподвижные металлические пластины, при прикосновении к которым приходит в действие механизм лифта.
Что это за система управления, как она работает и каковы её преимущества? Сенсорное управление имеет одно преимущество — в нём нет электрических контактов — одного из самых ненадёжных звеньев электронной аппаратуры.
1 2 3 4 5 6 7 8 9 10 11 12 13 14


А-П

П-Я