https://wodolei.ru/catalog/dushevie_kabini/steklyannye/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Управляли этими машинами, как правило, вручную, с помощью набора рычагов. Одна из таких машин была построена Вольфгангом фон Кемпелиа в конце XVIII века. Известно, что она очень хорошо имитировала речь, хотя не совсем правильно воспроизводила некоторые звуки. В 1920 году акустическая модель Р. Пэджета произносила целые фразы, например: «Алло, Лондон, вы слушаете?» или «О, Лейла, я люблю Вас!». Для этого автору приходилось руками очень искусно изменять форму резонирующей полости машины.
При дальнейшем моделировании оказалось (как часто бывает при моделировании функций человеческого организма), что воспроизведение человеческой речи исключительно сложно. Развитие говорящих машин стало действительно возможным только с появлением современной электронной техники, которая позволяет достигнуть необходимого уровня сложности.
Убедиться в сложности речевых сигналов позволяют спектрографы или анализаторы спектра. Простейшим прибором для частотного анализа является резонансный частотомер, содержащий ряд упругих стальных пластин с различной частотой собственных колебаний. При подаче на электромагнит этого прибора сигналов речи поле электромагнита возбуждает только ту пластину, собственная частота которой совпадает с частотой исследуемого сигнала.
На рис. 23 показан получающийся таким способом частотно — временной спектр звука сирены с постепенно повышающейся частотой, а на рис. 24 — спектр звука отдельного слова, произнесённого человеком. Как видно из рисунков, звуковые колебания, образующие речь (в отличие от речи автомата — сирены), содержат много составляющих, которые в сумме создают сложную звуковую картину. К сожалению, эти картины очень отличаются не только у различных дикторов, но даже у одного и того же человека в разное время.

Рис. 23. Спектр звука сирены Рис. 24. Спектр слова, произнесённого человеком
Взгляните на шесть контурных диаграмм английского слова «You» (рис. 25) — и вы убедитесь в этом.

Рис. 25. Контурные диаграммы английского слова «You»
Диаграммы получены от пяти различных людей, только нижние две диаграммы — от одного человека (на диаграммах контурные линии отображают различную интенсивность звучания).
ПРОСТЕЙШИЕ УСТРОЙСТВА РЕЧИ РОБОТОВ
Каждому ясно, что проще всего сделать говорящую модель, если в неё установить магнитофон. В отдельных случаях это решение подходит. Но в таком варианте больше механики, чем электроники, а сейчас электронные синтезаторы речи и вокодеры более современны и интересны.
Однако и магнитофонная речь вполне применима в некоторых речевых системах роботов, например в конструкции робота — секретаря, отвечающего на телефонные звонки: «Хозяина дома нет» или «Сообщите, что ему передать» и т.д.
В пионерском лагере им. Вити Коробкова (Крымская обл.) ребята вмонтировали магнитофон в модель фанерного львёнка (рис. 26). Если потянете львёнка за хвост — вспыхивает малиновым светом ротик, загораются зелёные глазки, он поднимает лапы и громко заявляет: «Хочу к маме в Африку или в пионерский лагерь „Иссары“!».

Рис. 26 Модель говорящего львёнка
Не скажешь, что электромеханическая система львёнка проста. Над ней пришлось потрудиться. Пришлось смонтировать магнитофон «Нота» с кольцевой лентой, на которую записали речь львёнка. Чтобы фраза каждый раз начиналась сначала, а не с произвольного места записи, ребята сделали фотоэлектронное устройство. Потребовалось установить систему конечных выключателей для коммутации ламп подсветки рта и глаз, магнитофона, усилителя. Чтобы звук был громче, применили четыре двухваттные динамические головки.
Но вот оказывается, что забавную систему речи иссаровского львёнка можно применить с пользой для сельского хозяйства в кибернетическом чучеле.
КИБЕРНЕТИЧЕСКОЕ ЧУЧЕЛО
Вам никогда не приходилось в пору созревания вишни бывать на Украине или в Молдавии? В это время тем, кто имеет сад, приходится выдерживать настоящие сражения. Кто же этот враг, который без объявления войны нападает на наши сады? Трудно даже поверить, — это птицы, и в основном те, кого мы весной встречаем скворечниками, — наши черногрудые скворцы!
В конце лета бесчисленные стаи птиц — скворцы, дрозды, воробьи — наносят громадный ущерб нашим садам. Численность скворцов в стаях доходит иногда до нескольких тысяч. Такой ораве достаточно нескольких минут, чтобы сад был опустошён. Ни одной ягодки обычно не остаётся…
Как защититься от птиц?
Технические достижения XX века почти не коснулись конструкции огородного чучела. Рваная рубашка на перекладине да ведро или тыква на жерди — так выглядит современный защитник наших огородов и садов. Таким же он был и 200 лет назад. К сожалению, приходится признать, что такое чучело совершенно не эффективно в борьбе с птицами: они к нему быстро привыкают и перестают бояться. Вот и приходится для защиты садов прибегать к хлопушкам и свисткам. С рассвета и до захода солнца людям приходится дежурить в садах и отпугивать непрошенных гостей. Как быть? Вот если бы научиться разговаривать по птичьи! Тогда можно было бы попытаться им кое-что объяснить…
Нужно научиться подавать им только один сигнал — сигнал тревоги, который птицы издают при приближении хищника.
Вот как эту задачу решили учёные из Молдавии. Они поймали скворца, посадили его в клетку и начали изучать те самые тревожные сигналы, которые издавала птица, когда к ней подносили близко кошку. Это и были сигналы тревоги по — скворечьи. Их записали на магнитофон и через усилитель и громкоговоритель стали передавать в садах и огородах. Заслышав такой сигнал, испуганные птицы тут же улетали и долго потом не возвращались. Так был найден надёжный способ защиты созревающего урожая от скворцов. Свою аппаратуру учёные назвали кибернетическим чучелом.
Для изготовления такого чучела понадобится магнитофон, усилитель мощностью 10 Вт и три — четыре одноваттных громкоговорителя, укреплённых на шестах на высоте 3…5 м.
МОДЕЛИРОВАНИЕ РЕЧИ АВТОМАТОВ
Как мы уже видели из рис. 23, спектр речи автомата — сирены значительно проще речи человека. Чтобы получить сигнал сирены, нужно сформировать звуковой сигнал, частота которого периодически изменялась бы по пилообразному закону.
Функциональная схема электронной сирены приведена на рис. 27. Прямоугольные импульсы с выхода задающего мультивибратора через диод VD1, пропускающий только отрицательные полуволны импульсов, поступают на зарядно — разрядную цепь, состоящую из зарядного резистора R 3 ap, конденсатора С1 и резистора цепи разрядки К ра зр — Зарядно — разрядная цепь превращает прямоугольный импульс мультивибратора в пилообразный импульс, фронт и спад которого и будут определять характер звучания тревожных сигналов сирены. Второй мультивибратор задаёт среднюю частоту тона сирены.

Рис. 27. Функциональная схема электронной сирены
Регулируя резисторы R 3a p (сопротивлением 5…20 кОм) и R pa3 p = (390… 100 кОм), добиваются нужного качества звучания сирены.
Электронный музыкальный автомат. Сравнительно простой электронный музыкальный автомат может быть собран по схеме рис. 28 («Радио», 1982, 12).
Подбирают ту или иную мелодию подстроечными резисторами цифро-аналогового преобразователя (ЦАП) (всего автомат выдаёт восемь звуков различной тональности). Частоту тактового генератора изменяют (если это необходимо) подборкой резистора R1.
Такой автомат удобно использовать в качестве квартирного звонка. Для этого его следует дополнить реле выдержки времени, усилителем мощности и сетевым блоком питания (рис. 29).
Если кратковременно нажать на кнопку SB1, сработает реле К1 и контактами К 1.1 самоблокируется. Автомат начнёт воспроизводить мелодию. По окончании мелодии счётчик возвратится в исходное состояние и на прямом выходе триггеров DD2.1, DD2.2, DD3.1,
Рис. 28. Простейший электромузыкальный инструмент

Рис. 29 Музыкальный автомат

Рис. 30 Автомат выдержки времени уcuлитель мощности и сетевой блок питания
DD3.2 29 появится напряжение высокого уровня. Соответственно на выходе элемента DD1.1 (рис. 30) будет напряжение низкого уровня и реле К1 отпустит якорь. Автомат выключится.
Усилитель мощности собран на двух транзисторах (VT2 и VT3) и нагружен динамической головкой ВА1.
Моделирование речи животных. Как вы убедитесь, схемы звуковых автоматов весьма просты. В них получение нужных сигналов сводится к включению и выключению (манипуляции) задающим генератором тона. Правда, в сирене использована не манипуляция, а модуляция, но по довольно простому закону — пилообразному. Эти автоматы очень просты в налаживании и часто работают сразу же после сборки. Значительно сложнее моделировать даже самую элементарную речь животных. Здесь законы модуляции гораздо многообразнее. Например, диаграмма кошачьего мяуканья (рис. 31, а) выглядит как плавное нарастание сигнала до максимума с последующим плавным спадом, а лай собаки — как наложение колебаний двух генераторов низкой частоты f t и более высокой Г 2 (рис. 31,6).
Моделирование речи человека. Из всех живых существ, населяющих мир, только человек оказался способным развить голосовой аппарат для кодирования и передачи сложнейшей информации. Учёные проводят сложнейшие исследования по автоматической расшифровке и имитации звуков речи, но пока ещё речевые сигналы содержат много загадок и не поддаются распознаванию даже с помощью тончайших анализаторов, использующих самые мощные современные электронные вычислительные машины.
Известны попытки имитации голоса человека с помощью электронных устройств. Так, роботостроитель Бруинсма, автор книги «Практические схемы роботов» (М.: Госэнер — гоиздат, 1962), создал для автомата «Игра в крестики и нолики» электронный прибор, имитирующий восторженный возглас человека при выигрыше автомата и «унылое ворчание» при проигрыше. В приборе более 10 мультивибраторов и других устройств. Однако его работа оставляет желать лучшего. Словом, моделирование речи — очень трудная задача.

Рис. 31 Эпюры напряжений
А — мяуканье кошки, б — лай собаки
Однако мы уже отмечали, что с помощью мультивибраторов можно получать звуки, близкие к звучанию некоторых гласных букв (А, О, И). Исследования показывают, что звучания этих гласных складываются из двух частот, т.е. для моделирования нужна параллельная работа по меньшей мере двух мультивибраторов.
Маломощные усилители речи роботов на микросхемах. В случаях, когда не требуется большая громкость звучания того или иного устройства речи робота и достаточно выходной мощности усилителя около 0,1 Вт, можно использовать усилители звуковой частоты, разработанные для миниатюрных приёмников («Радио», 1985, № 10). Такие усилители могут пригодиться в автоматических речевых устройствах.
Принципиальная схема первого варианта усилителя показана на рис. 32, а. Для повышения входного сопротивления усилителя в цепь эмиттера транзистора VT1 включён резистор R3 (его сопротивление может быть 110…240 Ом). Рекомендуемое сопротивление головки ВА1 громкоговорителя 6…8 Ом.
Второй вариант усилителя (рис. 32,6) отличается повышенной экономичностью. В первой ступени необходим транзистор с большим коэффициентом передачи тока, способный работать в режиме малых токов. Кроме указанного на схеме можно использовать транзисторы КТ342А, КТ342Б и КТ3102А — КТ3102Е. Входное сопротивление усилителя 10 кОм; ток, потребляемый первой ступенью, 0,3…0,5 мА. Конденсатор С2 предотвращает самовозбуждение усилителя на высокой частоте. Транзистор VT2 выполняет функции развязывающего фильтра в цепи питания транзистора VT1. Это позволило обойтись без дополнительного оксидного конденсатора и резистора.
В третьем варианте усилителя (рис. 32, в) функции входного транзистора выполняет микросхема DA1 на полевых транзисторах. Достоинство такой замены — высокое входное сопротивление (оно определяется сопротивлением резистора R1 и в зависимости от требований может быть в пределах от нескольких десятков килоом до 1 МОм).

Рис. 32. Маломощные усилители речи роботов на микросхемах
Все рассмотренные усилители при входном напряжении 30…50мВ обеспечивают выходную мощность 0,1…0,12 Вт. Ток, потребляемый ими в режиме покоя, не превышает соответственно З…ЗД 2… 2,5 и 4…4,5 мА; при максимальной громкости 40 мА. Усилители не критичны к типу используемых деталей и обладают запасом устойчивости.
Микросхему К504УН1Б можно заменить полевыми транзисторами КП103Е, КП201Е, КП201Ж или КП201И. При использовании оксидных конденсаторов К50 — 6, резисторов МЛТ — 0,125 и переменного резистора СПЗ — Зб размеры платы этого усилителя не превышают 25 х 30 мм.
Выходные ступени описанных усилителей в налаживании не нуждаются. Их чувствительность можно регулировать изменением сопротивления резисторов, подключённых к выводу 2 микросхемы, в пределах 240 Ом…2,7 кОм (при уменьшении сопротивления чувствительность увеличивается).
Необходимо иметь в виду, что номинальное значение сопротивления резистора R3 и входное сопротивление усилителя по схеме на рис. 45, а зависят от сопротивления резистора R1. Резистор R3 подбирают, контролируя напряжение на коллекторе транзистора VT1, которое должно находиться в пределах 1,4…1,7 В.

5. МОДЕЛИРОВАНИЕ СЛУХА
БИОНИКА И СЛУХ
Исключительное значение для роботостроения имеет совершенствование технических приборов, воспринимающих звуковые сигналы. Звук быстро позволяет передавать командные и управляющие сигналы. Разработка новых систем слуха, пригодных для роботов, также основана на бионических исследованиях.
Способность человеческого мозга разбираться с помощью слухового аппарата в хаосе звуков является одним из его самых чудесных свойств. «Наивысшим и совершеннейшим человеческим приспособлением» назвал звуковую речь человека выдающийся русский физиолог И. П. Павлов. Физическая природа звуковой речи хранит в себе множество тайн. Как образуются звуки в голосовом аппарате человека, как они воспринимаются слухом и от чего зависит характер звука — вот проблемы, которые ещё по сей день занимают интересы учёных, работающих в самых разнообразных областях науки.
1 2 3 4 5 6 7 8 9 10 11 12 13 14


А-П

П-Я