https://wodolei.ru/catalog/smesiteli/Germany/Grohe/
Доказывалось, что с помощью этой схемы ассимилируются частные теоретические модели нового блока, а из нового обобщающего уравнения выводятся соответствующие частные теоретические законы. Но и на этом обоснование не заканчивалось.
Исследователю нужно было убедиться, что он не разрушил при новом обобщении прежнего конструктивного содержания. Для этого Максвелл заново выводил из полученных обобщающих уравнений все частные законы ранее синтезированных блоков. Показательно, что в процессе такого вывода осуществлялась редукция каждой новой обобщающей теоретической схемы к частным теоретическим схемам, эквивалентным ранее ассимилированным.
На заключительной стадии теоретического синтеза, когда были получены основные уравнения теории и завершено формирование фундаментальной теоретической модели, исследователь произвёл последнее доказательство правомерности вводимых уравнений и их интерпретаций: на основе фундаментальной теоретической схемы он сконструировал соответствующие частные теоретические схемы, а из основных уравнений получил в новой форме все обобщённые в них частные теоретические законы. На этой заключительной стадии формирования максвелловской теории электромагнитного поля было доказано, что на основе теоретической модели электромагнитного поля можно получить в качестве частного случая теоретические схемы электростатики, постоянного тока, электромагнитной индукции и т. д., а из уравнений электромагнитного поля можно вывести законы Кулона, Ампера, Био-Савара, законы электростатической и электромагнитной индукции, открытые Фарадеем, и т. д.
Эта заключительная стадия одновременно предстаёт как изложение «готовой» теории. Процесс её становления воспроизводится теперь в обратном порядке в форме развёртывания теории, вывода из основных уравнений соответствующих теоретических следствий. Каждый такой вывод может быть расценён как изложение некоторого способа и результата решения теоретических задач.
Содержательные операции построения теоретических схем, выступающие как необходимый аспект обоснования теории, теперь приобретают новую функцию – они становятся образцами операций, ориентируясь на которые исследователь может решать новые теоретические задачи. Таким образом, образцы решения задач автоматически включаются в теорию в процессе её генезиса.
После того как теория построена, её дальнейшая судьба связана с её развитием в процессе расширения области приложения теории.
Этот процесс функционирования теории неизбежно приводит к формированию в ней новых образцов решения задач. Они включаются в состав теории наряду с теми, которые были введены в процессе её становления. Первичные образцы с развитием научных знаний и изменением прежней формы теории также видоизменяются, но в видоизменённой форме они, как правило, сохраняются во всех дальнейших изложениях теории. Даже самая современная формулировка классической электродинамики демонстрирует приёмы применения уравнений Максвелла к конкретным физическим ситуациям на примере вывода из этих уравнений законов Кулона, Био-Савара, Фарадея. Теория как бы хранит в себе следы своей прошлой истории, воспроизводя в качестве типовых задач и приёмов их решения основные особенности процесса своего формирования.
Особенности построения развитых, математизированных теорий в современной науке
С развитием науки меняется стратегия теоретического поиска. В частности, в современной физике теория создаётся иными путями, чем в классической. Построение современных физических теорий осуществляется методом математической гипотезы. Этот путь построения теории может быть охарактеризован как четвёртая ситуация развития теоретического знания. В отличие от классических образцов, в современной физике построение теории начинается с формирования её математического аппарата, а адекватная теоретическая схема, обеспечивающая его интерпретацию, создаётся уже после построения этого аппарата. Новый метод выдвигает ряд специфических проблем, связанных с процессом формирования математических гипотез и процедурами их обоснования.
Применение метода математической гипотезы
Первый аспект этих проблем связан с поиском исходных оснований для выдвижения гипотезы. В классической физике основную роль в процессе выдвижения гипотезы играла картина мира. По мере формирования развитых теорий она получала опытное обоснование не только через непосредственное взаимодействие с экспериментом, но и косвенно, через аккумуляцию экспериментальных фактов в теории. И когда физические картины мира представали в форме развитых и обоснованных опытом построений, они задавали такое видение исследуемой реальности, которое вводилось коррелятивно к определённому типу экспериментально-измерительной деятельности. Эта деятельность всегда была основана на определённых допущениях, в которых неявно выражались как особенности исследуемого объекта, так и предельно обобщённая схема деятельности, посредством которой осваивается объект.
В физике эта схема деятельности выражалась в представлениях о том, что следует учитывать в измерениях и какими взаимодействиями измеряемых объектов с приборами можно пренебречь. Указанные допущения лежат в основании абстрактной схемы измерения, которая соответствует идеалам научного исследования и коррелятивно которой вводятся развитые формы физической картины мира.
Например, когда последователи Ньютона рассматривали природу как систему тел (материальных корпускул) в абсолютном пространстве, где мгновенно распространяющиеся воздействия от одного тела к другому меняют состояние каждого тела во времени и где каждое состояние строго детерминировано (в лапласовском смысле) предшествующим состоянием, то в этой картине природы неявно присутствовала следующая абстрактная схема измерения. Во-первых, предполагалось, что в измерениях любой объект может быть выделен как себетождественное тело, координаты и импульсы которого можно строго определить в любой заданный момент времени (идея детерминированного в лапласовском смысле движения тел). Во-вторых, постулировалось, что пространство и время не зависят от состояния движения материальных тел (идея абсолютного пространства и времени). Такая концепция основывалась на идеализирующем допущении, что при измерениях, посредством которых выявляются пространственно-временные характеристики тел, свойства часов и линеек (жёстких стержней) физической лаборатории не меняются от присутствия самих тел (масс) и не зависят от относительного движения лаборатории (системы отсчёта).
Только та реальность, которая соответствовала описанной схеме измерений (а ей соответствовали простые динамические системы), принималась в ньютоновской картине мира за природу «саму по себе».
Показательно, что в современной физике приняты более сложные схемы измерения. Например, в квантовой механике элиминируется первое требование ньютоновской схемы, а в теории относительности – второе. В связи с этим вводятся и более сложные предметы научных теорий.
При столкновении с новым типом объектов, структура которых не учтена в сложившейся картине мира, познание меняло эту картину. В классической физике такие изменения осуществлялись в форме введения новых онтологических представлений. Однако последние не сопровождались анализом абстрактной схемы измерения, которая составляет операциональную основу вводимых онтологических структур. Поэтому каждая новая картина физической реальности проходила длительное обоснование опытом и конкретными теориями, прежде чем получала статус картины мира. Современная физика дала образцы иного пути построения знаний. Она строит картину физической реальности, эксплицируя схему измерения, в рамках которой будут описываться новые объекты. Эта экспликация осуществляется в форме выдвижения принципов, фиксирующих особенности метода исследования объектов (принцип относительности, принцип дополнительности).
Сама картина на первых порах может не иметь законченной формы, но вместе с принципами, фиксирующими «операциональную сторону» видения реальности, она определяет поиск математических гипотез. Новая стратегия теоретического поиска сместила акценты и в философской регуляции процесса научного открытия. В отличие от классических ситуаций, где выдвижение физической картины мира прежде всего было ориентировано «философской онтологией», в квантово-релятивистской физике центр тяжести был перенесён на гносеологическую проблематику. Поэтому в регулятивных принципах, целенаправляющих поиск математических гипотез, явно представлены (в конкретизированной применительно к физическому исследованию форме) положения теоретико-познавательного характера (принцип соответствия, простоты и т. д.).
В ходе математической экстраполяции исследователь создаёт новый аппарат путём перестройки некоторых уже известных уравнений. Физические величины, входящие в такие уравнения, переносятся в новый аппарат, где получают новые связи, а значит, и новые определения. Соответственно этому заимствуются из уже сложившихся областей знания абстрактные объекты, признаки которых были представлены физическими величинами. Абстрактные объекты погружаются в новые отношения, благодаря чему наделяются новыми признаками. Из этих объектов создаётся гипотетическая модель, которая неявно вводится вместе с новым математическим аппаратом в качестве его интерпретации.
Такая модель, как правило, содержит неконструктивные элементы, а это может привести к противоречиям в теории и к рассогласованию с опытом даже перспективных математических аппаратов.
Таким образом, специфика современных исследований состоит не в том, что математический аппарат сначала вводится без интерпретации (неинтерпретированный аппарат есть исчисление, математический формализм, который принадлежит математике, но не является аппаратом физики). Специфика заключается в том, что математическая гипотеза чаще всего неявно формирует неадекватную интерпретацию создаваемого аппарата, а это значительно усложняет процедуру эмпирической проверки выдвинутой гипотезы. Сопоставление следствий из уравнений с опытом всегда предполагает интерпретацию величин, которые фигурируют в уравнениях. Поэтому опытом проверяются не уравнения сами по себе, а система: уравнения плюс интерпретация. И если последняя неадекватна, то опыт может выбраковывать вместе с интерпретацией весьма продуктивные математические структуры, соответствующие особенностям исследуемых объектов.
Чтобы обосновать математическую гипотезу опытом, недостаточно просто сравнивать следствия из уравнений с опытными данными. Необходимо каждый раз эксплицировать гипотетические модели, которые были введены на стадии математической экстраполяции, отделяя их от уравнений, обосновывать эти модели конструктивно, вновь сверять с созданным математическим формализмом и только после этого проверять следствия из уравнений опытом.
Длинная серия математических гипотез порождает опасность накопления в теории неконструктивных элементов и утраты эмпирического смысла величин, фигурирующих в уравнениях. Поэтому в современной физике на определённом этапе развития теории становятся необходимыми промежуточные интерпретации, обеспечивающие операциональный контроль за создаваемой теоретической конструкцией. В системе таких промежуточных интерпретаций как раз и создаётся конструктивнообоснованная теоретическая схема, обеспечивающая адекватную семантику аппарата и его связь с опытом.
Все описанные особенности формирования современной теории можно проиллюстрировать, обратившись к материалу истории квантовой физики.
Квантовая электродинамика является убедительным свидетельством эвристичности метода математической гипотезы. Её история началась с построения формализма, позволяющего описать «микроструктуру» электромагнитных взаимодействий.
Создание указанного формализма довольно отчётливо расчленяется на четыре этапа. Вначале был введён аппарат квантованного электромагнитного поля излучения (поле, не взаимодействующее с источником). Затем на втором этапе, была построена математическая теория квантованного электронно-позитронного поля (было осуществлено квантование источников поля). На третьем этапе было описано взаимодействие указанных полей в рамках теории возмущений в первом приближении. Наконец, на заключительном, четвёртом этапе был создан аппарат, характеризующий взаимодействие квантованных электромагнитного и электронно-позитронного полей с учётом последующих приближений теории возмущений (этот аппарат был связан с методом перенормировок, позволяющим осуществить описание взаимодействующих полей в высших порядках теории возмущений).
В период, когда уже был пройден первый и второй этапы построения математического формализма теории и начал успешно создаваться аппарат, описывающий взаимодействие свободных квантованных полей методами теории возмущений, в самом фундаменте квантовой электродинамики были обнаружены парадоксы, которые поставили под сомнение ценность построенного математического аппарата. Это были так называемые парадоксы измеримости полей. В работах П. Иордана, В. А. Фока и особенно в совместном исследовании Л. Д. Ландау и Р. Пайерлса было показано, что основные величины, которые фигурировали в аппарате новой теории, в частности, компоненты электрической и магнитной напряжённости в точке, не имеют физического смысла. Поля в точке перестают быть эмпирически оправданными объектами, как только исследователь начинает учитывать квантовые эффекты.
Источником парадоксов измеримости была неадекватная интерпретация построенного формализма. Такая интерпретация была неявно введена в самом процессе построения аппарата методом математической гипотезы.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
Исследователю нужно было убедиться, что он не разрушил при новом обобщении прежнего конструктивного содержания. Для этого Максвелл заново выводил из полученных обобщающих уравнений все частные законы ранее синтезированных блоков. Показательно, что в процессе такого вывода осуществлялась редукция каждой новой обобщающей теоретической схемы к частным теоретическим схемам, эквивалентным ранее ассимилированным.
На заключительной стадии теоретического синтеза, когда были получены основные уравнения теории и завершено формирование фундаментальной теоретической модели, исследователь произвёл последнее доказательство правомерности вводимых уравнений и их интерпретаций: на основе фундаментальной теоретической схемы он сконструировал соответствующие частные теоретические схемы, а из основных уравнений получил в новой форме все обобщённые в них частные теоретические законы. На этой заключительной стадии формирования максвелловской теории электромагнитного поля было доказано, что на основе теоретической модели электромагнитного поля можно получить в качестве частного случая теоретические схемы электростатики, постоянного тока, электромагнитной индукции и т. д., а из уравнений электромагнитного поля можно вывести законы Кулона, Ампера, Био-Савара, законы электростатической и электромагнитной индукции, открытые Фарадеем, и т. д.
Эта заключительная стадия одновременно предстаёт как изложение «готовой» теории. Процесс её становления воспроизводится теперь в обратном порядке в форме развёртывания теории, вывода из основных уравнений соответствующих теоретических следствий. Каждый такой вывод может быть расценён как изложение некоторого способа и результата решения теоретических задач.
Содержательные операции построения теоретических схем, выступающие как необходимый аспект обоснования теории, теперь приобретают новую функцию – они становятся образцами операций, ориентируясь на которые исследователь может решать новые теоретические задачи. Таким образом, образцы решения задач автоматически включаются в теорию в процессе её генезиса.
После того как теория построена, её дальнейшая судьба связана с её развитием в процессе расширения области приложения теории.
Этот процесс функционирования теории неизбежно приводит к формированию в ней новых образцов решения задач. Они включаются в состав теории наряду с теми, которые были введены в процессе её становления. Первичные образцы с развитием научных знаний и изменением прежней формы теории также видоизменяются, но в видоизменённой форме они, как правило, сохраняются во всех дальнейших изложениях теории. Даже самая современная формулировка классической электродинамики демонстрирует приёмы применения уравнений Максвелла к конкретным физическим ситуациям на примере вывода из этих уравнений законов Кулона, Био-Савара, Фарадея. Теория как бы хранит в себе следы своей прошлой истории, воспроизводя в качестве типовых задач и приёмов их решения основные особенности процесса своего формирования.
Особенности построения развитых, математизированных теорий в современной науке
С развитием науки меняется стратегия теоретического поиска. В частности, в современной физике теория создаётся иными путями, чем в классической. Построение современных физических теорий осуществляется методом математической гипотезы. Этот путь построения теории может быть охарактеризован как четвёртая ситуация развития теоретического знания. В отличие от классических образцов, в современной физике построение теории начинается с формирования её математического аппарата, а адекватная теоретическая схема, обеспечивающая его интерпретацию, создаётся уже после построения этого аппарата. Новый метод выдвигает ряд специфических проблем, связанных с процессом формирования математических гипотез и процедурами их обоснования.
Применение метода математической гипотезы
Первый аспект этих проблем связан с поиском исходных оснований для выдвижения гипотезы. В классической физике основную роль в процессе выдвижения гипотезы играла картина мира. По мере формирования развитых теорий она получала опытное обоснование не только через непосредственное взаимодействие с экспериментом, но и косвенно, через аккумуляцию экспериментальных фактов в теории. И когда физические картины мира представали в форме развитых и обоснованных опытом построений, они задавали такое видение исследуемой реальности, которое вводилось коррелятивно к определённому типу экспериментально-измерительной деятельности. Эта деятельность всегда была основана на определённых допущениях, в которых неявно выражались как особенности исследуемого объекта, так и предельно обобщённая схема деятельности, посредством которой осваивается объект.
В физике эта схема деятельности выражалась в представлениях о том, что следует учитывать в измерениях и какими взаимодействиями измеряемых объектов с приборами можно пренебречь. Указанные допущения лежат в основании абстрактной схемы измерения, которая соответствует идеалам научного исследования и коррелятивно которой вводятся развитые формы физической картины мира.
Например, когда последователи Ньютона рассматривали природу как систему тел (материальных корпускул) в абсолютном пространстве, где мгновенно распространяющиеся воздействия от одного тела к другому меняют состояние каждого тела во времени и где каждое состояние строго детерминировано (в лапласовском смысле) предшествующим состоянием, то в этой картине природы неявно присутствовала следующая абстрактная схема измерения. Во-первых, предполагалось, что в измерениях любой объект может быть выделен как себетождественное тело, координаты и импульсы которого можно строго определить в любой заданный момент времени (идея детерминированного в лапласовском смысле движения тел). Во-вторых, постулировалось, что пространство и время не зависят от состояния движения материальных тел (идея абсолютного пространства и времени). Такая концепция основывалась на идеализирующем допущении, что при измерениях, посредством которых выявляются пространственно-временные характеристики тел, свойства часов и линеек (жёстких стержней) физической лаборатории не меняются от присутствия самих тел (масс) и не зависят от относительного движения лаборатории (системы отсчёта).
Только та реальность, которая соответствовала описанной схеме измерений (а ей соответствовали простые динамические системы), принималась в ньютоновской картине мира за природу «саму по себе».
Показательно, что в современной физике приняты более сложные схемы измерения. Например, в квантовой механике элиминируется первое требование ньютоновской схемы, а в теории относительности – второе. В связи с этим вводятся и более сложные предметы научных теорий.
При столкновении с новым типом объектов, структура которых не учтена в сложившейся картине мира, познание меняло эту картину. В классической физике такие изменения осуществлялись в форме введения новых онтологических представлений. Однако последние не сопровождались анализом абстрактной схемы измерения, которая составляет операциональную основу вводимых онтологических структур. Поэтому каждая новая картина физической реальности проходила длительное обоснование опытом и конкретными теориями, прежде чем получала статус картины мира. Современная физика дала образцы иного пути построения знаний. Она строит картину физической реальности, эксплицируя схему измерения, в рамках которой будут описываться новые объекты. Эта экспликация осуществляется в форме выдвижения принципов, фиксирующих особенности метода исследования объектов (принцип относительности, принцип дополнительности).
Сама картина на первых порах может не иметь законченной формы, но вместе с принципами, фиксирующими «операциональную сторону» видения реальности, она определяет поиск математических гипотез. Новая стратегия теоретического поиска сместила акценты и в философской регуляции процесса научного открытия. В отличие от классических ситуаций, где выдвижение физической картины мира прежде всего было ориентировано «философской онтологией», в квантово-релятивистской физике центр тяжести был перенесён на гносеологическую проблематику. Поэтому в регулятивных принципах, целенаправляющих поиск математических гипотез, явно представлены (в конкретизированной применительно к физическому исследованию форме) положения теоретико-познавательного характера (принцип соответствия, простоты и т. д.).
В ходе математической экстраполяции исследователь создаёт новый аппарат путём перестройки некоторых уже известных уравнений. Физические величины, входящие в такие уравнения, переносятся в новый аппарат, где получают новые связи, а значит, и новые определения. Соответственно этому заимствуются из уже сложившихся областей знания абстрактные объекты, признаки которых были представлены физическими величинами. Абстрактные объекты погружаются в новые отношения, благодаря чему наделяются новыми признаками. Из этих объектов создаётся гипотетическая модель, которая неявно вводится вместе с новым математическим аппаратом в качестве его интерпретации.
Такая модель, как правило, содержит неконструктивные элементы, а это может привести к противоречиям в теории и к рассогласованию с опытом даже перспективных математических аппаратов.
Таким образом, специфика современных исследований состоит не в том, что математический аппарат сначала вводится без интерпретации (неинтерпретированный аппарат есть исчисление, математический формализм, который принадлежит математике, но не является аппаратом физики). Специфика заключается в том, что математическая гипотеза чаще всего неявно формирует неадекватную интерпретацию создаваемого аппарата, а это значительно усложняет процедуру эмпирической проверки выдвинутой гипотезы. Сопоставление следствий из уравнений с опытом всегда предполагает интерпретацию величин, которые фигурируют в уравнениях. Поэтому опытом проверяются не уравнения сами по себе, а система: уравнения плюс интерпретация. И если последняя неадекватна, то опыт может выбраковывать вместе с интерпретацией весьма продуктивные математические структуры, соответствующие особенностям исследуемых объектов.
Чтобы обосновать математическую гипотезу опытом, недостаточно просто сравнивать следствия из уравнений с опытными данными. Необходимо каждый раз эксплицировать гипотетические модели, которые были введены на стадии математической экстраполяции, отделяя их от уравнений, обосновывать эти модели конструктивно, вновь сверять с созданным математическим формализмом и только после этого проверять следствия из уравнений опытом.
Длинная серия математических гипотез порождает опасность накопления в теории неконструктивных элементов и утраты эмпирического смысла величин, фигурирующих в уравнениях. Поэтому в современной физике на определённом этапе развития теории становятся необходимыми промежуточные интерпретации, обеспечивающие операциональный контроль за создаваемой теоретической конструкцией. В системе таких промежуточных интерпретаций как раз и создаётся конструктивнообоснованная теоретическая схема, обеспечивающая адекватную семантику аппарата и его связь с опытом.
Все описанные особенности формирования современной теории можно проиллюстрировать, обратившись к материалу истории квантовой физики.
Квантовая электродинамика является убедительным свидетельством эвристичности метода математической гипотезы. Её история началась с построения формализма, позволяющего описать «микроструктуру» электромагнитных взаимодействий.
Создание указанного формализма довольно отчётливо расчленяется на четыре этапа. Вначале был введён аппарат квантованного электромагнитного поля излучения (поле, не взаимодействующее с источником). Затем на втором этапе, была построена математическая теория квантованного электронно-позитронного поля (было осуществлено квантование источников поля). На третьем этапе было описано взаимодействие указанных полей в рамках теории возмущений в первом приближении. Наконец, на заключительном, четвёртом этапе был создан аппарат, характеризующий взаимодействие квантованных электромагнитного и электронно-позитронного полей с учётом последующих приближений теории возмущений (этот аппарат был связан с методом перенормировок, позволяющим осуществить описание взаимодействующих полей в высших порядках теории возмущений).
В период, когда уже был пройден первый и второй этапы построения математического формализма теории и начал успешно создаваться аппарат, описывающий взаимодействие свободных квантованных полей методами теории возмущений, в самом фундаменте квантовой электродинамики были обнаружены парадоксы, которые поставили под сомнение ценность построенного математического аппарата. Это были так называемые парадоксы измеримости полей. В работах П. Иордана, В. А. Фока и особенно в совместном исследовании Л. Д. Ландау и Р. Пайерлса было показано, что основные величины, которые фигурировали в аппарате новой теории, в частности, компоненты электрической и магнитной напряжённости в точке, не имеют физического смысла. Поля в точке перестают быть эмпирически оправданными объектами, как только исследователь начинает учитывать квантовые эффекты.
Источником парадоксов измеримости была неадекватная интерпретация построенного формализма. Такая интерпретация была неявно введена в самом процессе построения аппарата методом математической гипотезы.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65