https://wodolei.ru/catalog/unitazy/nedorogie/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Измеритель температуры, помещённый в сосуд с веществом, показывает непрерывный рост температуры при нагревании. При 804° мы обнаружим сразу два новых, связанных между собой явления: вещество начнёт плавиться, и подъём температуры приостановится. Пока всё вещество не превратится в жидкость, температура не изменится; дальнейший подъём температуры – это уже нагревание жидкости. Все кристаллические вещества имеют определённую температуру плавления . Лёд плавится при 0°, железо – при 1527°, ртуть – при –39° и т.д.
Как мы уже знаем, в каждом кристаллике атомы или молекулы вещества образуют упорядоченную упаковку и совершают малые колебания около своих средних положений. По мере нагревания тела скорость колеблющихся частиц возрастает вместе с размахом колебаний.
Это увеличение скорости движения частиц с возрастанием температуры составляет один из основных законов природы, который относится к веществу в любом состоянии – твёрдом, жидком или газообразном. Зная температуру, можно вычислить, с какой средней скоростью движутся частицы вещества. Скорости эти довольно велики – порядка нескольких сот метров в секунду. При нагревании тела, например от нуля до 1000°, скорость частиц возрастает более чем вдвое.
Когда достигнута определённая, достаточно высокая температура кристалла, колебания его частиц становятся столь энергичными, что аккуратное расположение частиц становится невозможным – кристалл плавится.
С началом плавления подводимое тепло идёт уже не на увеличение скорости частиц, а на разрушение кристаллической решётки. Поэтому подъём температуры приостанавливается. Последующее нагревание – это увеличение скорости частиц жидкости.
В интересующем нас случае кристаллизации из расплава явления наблюдаются в обратном порядке: по мере охлаждения жидкости её частицы замедляют своё хаотическое движение; при достижении определённой, достаточно низкой температуры скорость частиц уже столь мала, что некоторые из них под действием сил притяжения начинают пристраиваться одна к другой, образуя кристаллические зародыши. Пока всё вещество не закристаллизуется, температура остаётся постоянной. Эта температура, как правило, та же, что и температура плавления.
О том, как получить из твердеющего расплава крупные кристаллы, мы расскажем в следующей главе. Это не так просто.
Если не принимать специальных мер, то кристаллизация из расплава начнётся сразу во многих местах. Кристаллики будут расти в виде правильных, свойственных им многогранников совершенно так же, как мы это описывали выше. Однако свободный рост продолжается недолго: увеличиваясь, кристаллики наталкиваются друг на друга, в местах соприкосновения рост прекращается, и затвердевшее тело получает зернистое строение. Каждое зерно – это отдельный кристаллик, которому не удалось принять своей правильной формы.
В зависимости от многих условий и, прежде всего, от быстроты охлаждения твёрдое тело может обладать более или менее крупными зёрнами: чем медленнее охлаждение, тем крупнее зёрна. Размеры зёрен кристаллических тел колеблются от миллионной доли сантиметра до нескольких миллиметров. В большинстве случаев зернистое кристаллическое строение тел можно наблюдать в микроскоп. Твёрдые тела обычно имеют именно такое мелкокристаллическое строение.

15. Выращивание кристаллов

Промышленность и наука часто нуждаются в более или менее крупных одиночных кристаллах. Колоссальное значение для техники имеют кристаллы сегнетовой соли и кварца, обладающие замечательным свойством преобразовывать механические действия (например, давление) в электрическое напряжение (стр. 48).
Оптическая промышленность нуждается в крупных кристаллах кальцита, каменной соли, флюорита и др.
Для часовой промышленности очень важны кристаллы рубинов, сапфиров и некоторых других драгоценных камней. Дело в том, что отдельные подвижные части обыкновенных карманных часов делают в час до 20 000 колебаний. Такая большая скорость предъявляет исключительно серьёзные требования к кончикам осей и к подшипникам. Истирание будет наименьшим, когда подшипником для кончика оси диаметром 0,07–0,15 мм служит рубин или сапфир. Искусственные кристаллы этих веществ обладают очень большой прочностью и очень малым трением по отношению к стали. Замечательно, что искусственные камни оказываются при этом лучше таких же, находимых в природе.
Для изучения свойств металлов важно располагать одиночными крупными кристаллами железа, меди и др.
Итак, надо научиться выращивать кристаллы всех этих веществ до нужного размера. Для этой цели существует ряд способов. Можно растить кристаллы и из расплава и из раствора. Основная трудность состоит в том, что, не принимая специальных мер, мы вместо крупного кристалла получим из расплава мелкокристаллическое твёрдое тело, а из раствора – мелкокристаллический осадок на дне сосуда.
Мы уже говорили, что кристаллы начинают расти из раствора тогда, когда он пересыщен растворяемым веществом. А для разных температур количество вещества, насыщающего раствор, различно. Поэтому выращивание из раствора крупных, хорошо огранённых кристаллов возможно лишь в том случае, если температура раствора поддерживается постоянной при помощи термостата. Без этого прибора температура на протяжении суток колебалась бы, во всяком случае, на 3–4°; при таких условиях кристалл не может расти достаточно «аккуратно».
Термостат – это большая ванна, окутанная войлоком, хорошо закрытая и залитая водой. Внутрь термостата ставится сосуд с раствором. Температура поддерживается на нужном уровне при помощи электрической печи. Автоматический регулятор выключает печь, когда температура слишком повышается, и включает её вновь, когда температура падает. Регулировать температуру при помощи этих приборов можно с точностью до 0,01°.
По мере роста кристалла температуру раствора постепенно снижают. Это надо делать для того, чтобы раствор всё время оставался немного пересыщенным, несмотря на непрерывное выделение из него вещества. Опыты показывают, что большие кристаллы удаётся вырастить только при очень медленном охлаждении раствора, примерно на 0,1° в один-два дня. Рост крупных кристаллов продолжается много недель.
Ценнейший вклад в разработку способов выращивания кристаллов сделан русским кристаллографом Г.В. Вульфом.
Очень трудно выращивать крупные кристаллы и из расплавов. Здесь помогает одно своеобразное явление: при определённых условиях из возникших на стенке сосуда зародышей «выживает» только один, развиваясь за счёт своих менее «удачливых» соседей.
Одиночные кристаллы легкоплавких металлов получают обычно следующим способом (см. рис. 39). Металл расплавляют в стеклянной пробирке А с оттянутым концом. Пробирка подвешена на нити внутри вертикальной цилиндрической печи Б . При помощи нити пробирку медленно опускают вниз. Оттянутый конец постепенно выходит из печи, и металл начинает застывать. При этом из всех кристалликов выживает один; по мере опускания пробирки он продолжает расти вдоль её оси. В конце концов весь металл застывает в виде одиночного кристалла.


Рис. 39. Получение одиночных кристаллов из расплава.


А вот каким образом выращивают тугоплавкие кристаллы рубина лауреаты Сталинской премии чл.-корр. АН А.В. Шубников и С.К. Попов. Мелкий порошок вещества сыплется струёй через пламя. Порошинки плавятся: крошечные капли падают на тугоплавкую подставку. Здесь начинается кристаллизация, и опять-таки из множества кристалликов вырастает лишь один. Наши учёные нашли способ получения длинных кристаллических стержней драгоценного камня, столь необходимого для производства часов и других точных механизмов.

16. «Твёрдая жидкость»

Если плавление всегда начинается при одной и той же температуре, то ход кристаллизации несколько более капризен. Обычно расплав удаётся переохладить ниже температуры плавления. В некоторых случаях это переохлаждение может быть настолько значительным, что вещество, постепенно загустевая, превращается в твёрдое на ощупь, но не кристаллическое тело – атомам так и не удаётся построиться в правильном порядке.
Часто бывает и так, что переохлаждение (то есть уменьшение температуры ниже температуры плавления) удаётся провести лишь на несколько градусов. Затем кристаллизация происходит, причём в отличие от обычного случая она происходит очень быстро, сразу по всему объёму. Переохлаждённое состояние иногда является в высшей степени неустойчивым состоянием. Достаточно слегка встряхнуть сосуд или сделать доступной поверхность жидкости для пылинок, чтобы мгновенно началось образование кристалликов.
При наличии затравки кристаллизация, как правило, начинается «вовремя». Такими затравками могут служить пылинки исследуемого твёрдого вещества, которые имеются в воздухе над затвердевающим веществом. Поэтому кристаллизация в открытом сосуде происходит обычно без переохлаждения.
Одни вещества с трудом переохлаждаются, другие, напротив, кристаллизуются с трудом. К первым принадлежат металлы, ко вторым – такие вещества, как глицерин, стекло, сахарная карамель. Эти последние всегда получаются при охлаждении в виде некристаллических тел. Иногда их кристаллизация обнаруживается после многих лет хранения. Такая запоздалая кристаллизация стекла называется расстекловыванием, кристаллизация карамели – засахариванием.
Что же представляет собой стекло? Можно ли безоговорочно называть его твёрдым телом?
Стекло сохраняет свою форму – это свойство твёрдого тела. Но по расположению своих молекул стекло – жидкость. В расположении молекул стекла нет порядка, даже в небольшом объёме отсутствует упорядоченное решетчатое строение. Тела типа стекла – «твёрдые жидкости» – называют аморфными телами.
В противоположность кристаллам, аморфные вещества не имеют определённой температуры плавления. Стекло не плавится, а размягчается. При нагревании кусок стекла сначала становится из твёрдого мягким: его легко можно гнуть или растягивать; при более высокой температуре кусок начинает изменять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса стекла принимает форму того сосуда, где оно лежит. Эта масса сначала густа, как мёд, потом – как сметана, и, наконец, она становится почти такой же маловязкой жидкостью, как вода. При всём желании мы не можем здесь указать определённой температуры перехода твёрдого тела в жидкое. Причины этого лежат в коренном отличии строения стекла от строения кристаллических тел.
Стекло не плавится, так как жидкости не приходится плавиться. Плавление – это переход от расположения молекул в строгом порядке к беспорядочному расположению. А в твёрдом стекле молекулы и так расположены беспорядочно. Значит, повышение температуры стекла лишь увеличивает размах колебаний его молекул, даёт им постепенно всё большую и большую свободу перемещения. У стекла и подобных ему веществ нет основного свойства «настоящего» твёрдого кристаллического тела, в отношении которого мы можем уверенно сказать: «до такой-то температуры оно твёрдое, а вот теперь наряду с твёрдым телом начинает появляться – в результате его расплавления – жидкость».

17. Истинно твёрдые тела построены из кристаллов

Итак, подавляющее большинство твердых тел имеет кристаллическое строение. Металлы и камни состоят из маленьких кристалликов – зёрен, видимых большей частью только в микроскоп.
Свойства кристалликов, их размер, их взаимное расположение определяют свойства всего твёрдого тела. Советские учёные затратили много труда на выяснение этой связи и достигли крупнейших успехов.
Постараемся дать читателю представление об огромной важности этих исследований для нашей техники.
Всякая обработка металла сказывается на его зёрнах. Вот получен кусок литого металла: зёрна его расположены беспорядочно, размер их довольно велик. Из металла делают проволоку, протягивают её. Как ведут себя при этом кристаллические зёрна?
Исследования показали, что изменение формы твёрдого тела при протягивании проволоки или другой механической обработке вызывает раздробление кристаллических зёрен. Одновременно под действием механических сил в их расположении появляется некоторый порядок.
О каком порядке может идти здесь речь? Ведь обломки зёрен совершенно бесформенны.
Это верно, внешняя форма обломка может быть какой угодно, но обломок кристалла есть всё же кристалл: ионы в его решётке упакованы так же правильно, как и в хорошо огранённом кристалле. Поэтому в каждом обломке можно указать, как расположена его элементарная ячейка. До обработки ячейки строго упорядочены только в пределах каждого отдельного зерна – общего порядка обычно нет. После же обработки зёрна выстраиваются так, что в расположении их ячеек проступает некоторый общий порядок, называемый текстурой , например, диагонали ячеек всех зёрен устанавливаются примерно параллельно направлению обработки.
На рисунке 40, б текстура изображена на примере упорядоченности некоторых определённых отмеченных нами в зёрнах плоскостей – плоскостей наиболее плотного заполнения ионами, которые обозначены рядами точек.


Рис. 40. Отсутствие текстуры (слева) и её наличие (справа).


Явление текстуры было впервые обнаружено советскими учёными – проф. Н.Е. Успенским и чл.-корр. АН С.Т. Конобеевским.
Различные виды обработки (прокат, ковка, протяжка) приводят к текстурам различных типов. В одних случаях зёрна поворачиваются так, что их элементарные ячейки выстраиваются вдоль направления обработки диагональю, в других случаях – ребром куба и т.д. Чем совершеннее прокат или протяжка, тем совершеннее и текстура кристаллических зёрен металла. Наличие текстуры очень сильно влияет на механические свойства изделия. Изучение расположения и величины кристаллических зёрен в металлических изделиях пролило свет на сущность механической обработки металлов и указало, как следует правильно вести её.
1 2 3 4 5 6 7 8


А-П

П-Я