https://wodolei.ru/catalog/napolnye_unitazy/
Следовательно, он убежден, что убежден в истинности истинного утверждения.
- Понятно! - сказала Алиса.
- Запиши-ка себе все это в записную книжку и озаглавь "Утверждение 2", - предложил ШалтайБолтай. И Алиса записала:
"Утверждение 2. Если дано любое истинное утверждение, то зазеркальный логик убежден, что он убежден в истинности этого утверждения".
- Теперь ты понимаешь, - спросил ШалтайБолтай, - почему зазеркальный логик не может быть убежденным в истинности истинного утверждения?
- Не совсем, - призналась Алиса.
- Такое заключение нетрудно вывести из утверждения 1, утверждения 2 и условия 4, - сказал ШалтайБолтай. - Возьмем любое утверждение, в истинности которого убежден зазеркальный логик. По утверждению 1 он убежден, что не убежден в истинности этого утверждения. Но он не может быть одновременно убежденным, что он убежден в истинности этого утверждения (так как по условию 4 он не может быть убежденным в чем-то и одновременно быть убежденным в противоположном). А так как он не убежден, что убежден в истинности утверждения, то оно не может быть истинным, потому что если бы оно было истинным, то по утверждению 2 зазеркальный логик был бы убежден, что убежден в его истинности. Но в действительности он не убежден, что убежден в истинности рассматриваемого утверждения.
Следовательно, оно не может быть истинным. Итак, ты видишь, что зазеркальный логик никогда не бывает убежден в истинности любого истинного утверждения. Все утверждения, в истинности которых убежден зазеркальный логик, ложны.
Алисе пришлось изрядно поразмыслить над сказанным.
- Весьма сложное доказательство! - наконец сказала она.
- Ничего, со временем привыкнешь! - заверил ее Шалтай-Болтай.
Алиса поразмыслила еще немного.
- Мне хотелось бы спросить, - обратилась она к Шалтаю-Болтаю, обязательно ли зазеркальный логик должен быть убежден в истинности всех ложных утверждений или просто он убежден в истинности только ложных утверждений?
- Хороший вопрос, дитя мое! - одобрил ШалтайБолтай.
- И ответ на него хороший: "Да". Возьмем любое ложное утверждение. По условию 5 зазеркальный логик либо убежден в истинности этого утверждения, либо убежден в истинности противоположного утверждения. Но в истинности противоположного утверждения он не может быть убежден, так как оно истинно. Следовательно, зазеркальный логик убежден в истинности ложного утверждения.
- Как необычно!-воскликнула Алиса. - Подумать только! Зазеркальный логик убежден в истинности всех ложных и не убежден в истинности истинных утверждений!
- Совершенно верно! - сказал Шалтай-Болтай. - И это самое прекрасное в зазеркальной логике! Не могу не отметить еще одну весьма интересную ее особенность, - добавил он. - Всякий, кто убежден в истинности всех ложных и не убежден в истинности истинных утверждений и честно выражает свои убеждения, повторяю, всякий, кто придерживается таких убеждений, удовлетворяет пяти основным условиям, характеризующим зазеркальных логиков.
- Почему? - спросила Алиса.
- О, это очень легко доказать! - ответил ШалтайБолтай. Представим себе абсолютно честного человека, который убежден в истинности тех и только тех утверждений, которые ложны. Так как он честен, то, разумеется, удовлетворяет условию 1. А как обстоит дело с условием 2? Предположим, этот человек заявляет, что некоторое утверждение истинно. Поскольку он честен, этот человек действительно убежден в истинности того утверждения, .о котором идет речь. Следовательно, неверно, что он не убежден в истинности утверждения. Вместе с тем этот человек убежден в истинности всего, что ложно, даже если речь идет о ложных представлениях о его собственных убеждениях! Таким образом, неверно, что он не убежден в истинности утверждения, а, так как он убежден в истинности всего, что ложно, он должен быть убежден в ложном факте, состоящем в том, будто он не убежден в истинности утверждения. Иначе говоря, наш честный человек убежден, что он не убежден в истинности утверждения. А так как он убежден, что не убежден в истинности утверждения, то он заявляет, что не убежден в его истинности (напоминаю, что речь идет о честном человеке).
Следовательно, наш честный человек удовлетворяет условию 2.
Перейдем теперь к условию 3. Возьмем любое истинное утверждение. Так как оно истинно, то тот. кто убежден в истинности ложных и не убежден в истинности истинных утверждений, не убежден в истинности выбранного нами произвольного истинного утверждения. Так как он не убежден в истинности утверждения, то должен быть убежден, что убежден в его истинности (поскольку все его убеждения правильнее было бы назвать заблуждениями!). А раз он убежден, что убежден в истинности утверждения, он не может не заявить, что убежден в его истинности. Тем самым доказано, что он удовлетворяет условию 3.
- Условия 4 и 5 очевидны, - продолжал ШалтайБолтай, - Возьмем любое утверждение и противоположное утверждение. Одно из них должно быть истинно, другое ложно.
Следовательно, тот, кто убежден в истинности ложных и не убежден в истинности истинных утверждений, убежден в истинности ложного (прямого или противоположного)
утверждения и не убежден в истинности истинного. Значит, он не убежден в истинности обоих утверждений (и поэтому удовлетворяет условию 4), но зато убежден в истинности по крайней мере одного из них (и поэтому удовлетворяет условию 5).
- Вот и вся история, - заключил Шалтай-Болтай. - Зазеркальный логик - человек честный, но судит обо всем превратно. И наоборот, всякий, кто и честен, и судит обо всем превратно, удовлетворяет пяти условиям, отличающим зазеркального логика от прочих смертных. Вот тебе ключ к разгадке всех загадок!
- Одно все-таки мне неясно, - сказала Алиса. - Почему зазеркальный логик никогда не высказывает какое-нибудь утверждение и противоположное утверждение и вместе с тем заявляет, что утверждение и противоположное ему оба истинны?
- Что же тут непонятного? Все очень просто, - возразил Шалтай-Болтай. - Взять, например, утверждение о том, что Черный Король спит. Ему противоположно утверждение о том, что Черный Король бодрствует. Ясно, одно из этих утверждений истинно, а другое ложно. Зазеркальный логик убежден в истинности только того утверждения, которое ложно, поэтому он не может быть убежден в истинности прямого и противоположного утверждения в отдельности. Тем не менее отдельно взятое утверждение о том, что Черный Король одновременно и спит, и бодрствует, ложно.
Следовательно, зазеркальный логик должен быть убежден в его истинности.
А теперь, когда у тебя есть ключ к разгадке, ответы на все мои вопросы покажутся тебе очевидными.
Вот как ответил сам Шалтай-Болтай на свои же вопросы.
1. Так как зазеркальный логик убежден, что Черный Король спит, в действительности Черный Король должен бодрствовать. Следовательно, Алиса не снится Черному Королю. (Под "снится" я отнюдь не имею в виду "грезится наяву"!) А так как Алиса Черному Королю не снится, зазеркальный логик должен быть убежден, что Алиса снится Черному Королю.
2. Так как зазеркальный логик убежден, что либо Черный Король, либо Черная Королева спит, то в действительности неверно, что либо Черный Король, либо Черная Королева спит. Следовательно, они оба бодрствуют. А так как Черная Королева бодрствует, зазеркальный логик должен быть убежден, что она спит (и по той же причине он должен быть убежден, что Черный Король спит).
3. Зазеркальный логик убежден, что Черный Король спит. Это означает лишь, что Черный Король бодрствует, но ничего не говорит нам о том, спит ли Черная Королева или бодрствует. Поэтому мы ничего не можем сказать о том, убежден ли зазеркальный логик, что Черная Королева спит.
4. Иное дело четвертый вопрос! Так как зазеркальный логик убежден, что Черный Король спит. то это неверно, и в действительности Черный Король бодрствует.
Следовательно,-заведомо неверно, что Черный Король и Черная Королева оба спят. Значит, зазеркальный логик должен быть убежден, что Черный Король и Черная Королева оба спят.
Интересно отметить, что при этом зазеркальный логик не обязательно должен быть убежден, что Черная Королева спит.
Однако он убежден, что Черный Король и Черная Королева оба спят!
5. Зазеркальный логик убежден, что Черный Король и Черная Королева оба спят. Это означает лишь, что в действительности по крайней мере один из августейших супругов бодрствует. Мы не знаем, кто именно (Король или Королева) бодрствует, поэтому не можем определить, убежден ли зазеркальный логик, что Черный Король спит, или нет.
6. Так как зазеркальный логик убежден, что Черный Король и Черная Королева либо оба спят, либо оба бодрствуют, то в действительности неверно, что они либо оба спят, либо оба бодрствуют. Значит, один из них спит, а другой бодрствует. О том, кто бодрствует, зазеркальный логик думает, что он (или она) спит. О том, кто спит, зазеркальный логик думает, что она (или он) бодрствует.
7. Так как зазеркальный логик судит обо всем превратно, в действительности Лев должен находиться в лесу без Единорога. Следовательно, Лев в лесу. Значит, зазеркальный логик должен быть убежден, что Льва в лесу нет.
8. Так как зазеркальный логик убежден, что ложное истинно, а истинное ложно, Бармаглот за всю свою жизнь не высказал ни одного истинного утверждения. Все утверждения, высказанные когда-либо Бармаглотом, ложны. Следовательно, зазеркальный логик должен быть убеждена истинности каждого утверждения Бармаглота.
9. Зазеркальный логик убежден, что у всех грифонов есть крылья. Значит, в действительности у грифонов нет крыльев. Но тогда существует по крайней мере один грифон без крыльев. Следовательно, по крайней мере один грифон должен существовать.
10. Этот вопрос "с подвохом", так как неверно, что зазеркальный логик может быть уверен в обоих фактах, о которых говорится в условиях задачи.
Предположим, зазеркальный логик убежден, что Алиса не достигнет восьмой горизонтали, не став королевой. Значит, неверно, что Алиса не достигнет восьмой горизонтали, не став при этом королевой. В свою очередь это означает, что Алиса достигнет восьмой горизонтали, не став королевой.
Следовательно, верно, что Алиса достигнет восьмой горизонтали, а поэтому зазеркальный логик не может быть убежден, что Алиса достигнет восьмой горизонтали.
Глава 11
Теория Черного Короля
На этом месте разговор Алисы с Шалтаем-Болтаем был прерван странным прерывистым рычанием, доносившимся откуда-то издалека и несколько напоминавшим пыхтенье парового двигателя.
- Что это? - с тревогой спросила Алиса.
- Ничего особенного, - ответил Шалтай-Болтай. - Просто Черный Король храпит во сне. На Его Величество стоит взглянуть! Ну и вид у него!
- О да! - сказала Алиса, вспоминая свое первое путешествие в Зазеркалье. - Однажды мне уже приходилось видеть спящего Черного Короля. Тогда я была с Траляля и Труляля, и они сказали мне, что Черный Король видит меня во сне, что я только сон и если Король вдруг проснется, то я сразу потухну, как свеча" Разве не глупо было .с их стороны болтать такую несусветную чепуху?
- А почему же ты не разбудила Черного Короля и не проверила, чепуха это или не чепуха? - спросил Шалтай-Болтай.
- Я уже почти решилась, но потом передумала, - с вызовом сказала Алиса. - Будить Черного Короля было бы очень опрометчиво!
- Не знаю, не знаю, - задумчиво ответил ШалтайБолтай. - Но все равно, если хочешь, можешь пойти и взглянуть на него, а я останусь здесь и порешаю еще логические задачи.
Поняв вежливый намек, Алиса решила, что ей пора двигаться дальше. Она поблагодарила Шалтая-Болтая за весьма полезные уроки логики и прямиком отправилась в лес, туда, откуда слышался храп.
Вскоре она действительно увидела Черного Короля. Он только что проснулся и стоял в окружении Траляля и Труляля, которые не спускали с него глаз.
- Видите, Король проснулся! - закричала Алиса обоим братцам. - А я не погасла, как свеча! Я существую, как прежде! Что вы на это скажете? - -- добавила она торжествующе.
- Думаю, нам лучше вернуться в наш домик, - сказал Труляля, обращаясь к братцу. - Вот-вот разразится ливень.
- Ты можешь остаться здесь, если тебе угодно, - добавил он, взглянув на Алису, - а мы с братцем идем домой.
Алиса взглянула вверх. На небе не было ни облачка.
- Думаю, мне лучше остаться, - сказала она. - Мне нужно поговорить с Черным Королем. Но я хотела бы еще раз поблагодарить вас за чудесные логические игры. Они мне так понравились!
Держа друг друга за руки, братцы медленно поплелись из леса. Проводив их взглядом, Алиса повернулась к Черному Королю, который к тому времени полностью очнулся от сна.
- Ты, должно быть, Алиса! - сказал Черный Король.
- Да, - ответила Алиса, - а как вы узнали?
- Ты знаешь, - сказал Король, - мне только что приснился странный сон! Мне снилось, будто я гулял по лесу с Траляля и Труляля и мы набрели на девочку, которая прикорнула под деревом. Она была очень похожа на тебя.
- Кто это? - спросил я.
- Это Алиса, - ответил Труляля, - и знаете, что ей снится?
- Откуда кто-нибудь может знать, что ей снится? - ответил я. "Ей снитесь вы. Ваше Величество!" - сказал Труляля. Затем оба братца попытались убедить меня, что я сам по себе не существую, а только снюсь тебе и что если ты проснешься, то я сразу - фьють! - потухну, как свеча!
Поэтому, - продолжал Король, - я очень рад видеть тебя наяву и убедиться, что я жив, а не потух - фьють!
- как свеча!
- Какое сверхнеобычное совпадение! - воскликнула Алиса. - То же самое, только наоборот, приключилось со мной, когда я впервые увидела вас, Ваше Величество. Вы тогда спали, а я была с Траляля и Труляля, и они принялись убеждать меня, что я вам только снюсь и, если вы вдруг проснетесь, потухну - фьють! - как свеча!
- Вот видишь, - улыбнулся Черный Король, - а сейчас мы с тобой бодрствуем, и никто из нас не потух - фьють! - как свеча! Сдается мне, что братцы Траляля и Труляля либо заблуждались, либо просто подшучивали над нами!
- Но откуда мне быть уверенной, что я бодрствую?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
- Понятно! - сказала Алиса.
- Запиши-ка себе все это в записную книжку и озаглавь "Утверждение 2", - предложил ШалтайБолтай. И Алиса записала:
"Утверждение 2. Если дано любое истинное утверждение, то зазеркальный логик убежден, что он убежден в истинности этого утверждения".
- Теперь ты понимаешь, - спросил ШалтайБолтай, - почему зазеркальный логик не может быть убежденным в истинности истинного утверждения?
- Не совсем, - призналась Алиса.
- Такое заключение нетрудно вывести из утверждения 1, утверждения 2 и условия 4, - сказал ШалтайБолтай. - Возьмем любое утверждение, в истинности которого убежден зазеркальный логик. По утверждению 1 он убежден, что не убежден в истинности этого утверждения. Но он не может быть одновременно убежденным, что он убежден в истинности этого утверждения (так как по условию 4 он не может быть убежденным в чем-то и одновременно быть убежденным в противоположном). А так как он не убежден, что убежден в истинности утверждения, то оно не может быть истинным, потому что если бы оно было истинным, то по утверждению 2 зазеркальный логик был бы убежден, что убежден в его истинности. Но в действительности он не убежден, что убежден в истинности рассматриваемого утверждения.
Следовательно, оно не может быть истинным. Итак, ты видишь, что зазеркальный логик никогда не бывает убежден в истинности любого истинного утверждения. Все утверждения, в истинности которых убежден зазеркальный логик, ложны.
Алисе пришлось изрядно поразмыслить над сказанным.
- Весьма сложное доказательство! - наконец сказала она.
- Ничего, со временем привыкнешь! - заверил ее Шалтай-Болтай.
Алиса поразмыслила еще немного.
- Мне хотелось бы спросить, - обратилась она к Шалтаю-Болтаю, обязательно ли зазеркальный логик должен быть убежден в истинности всех ложных утверждений или просто он убежден в истинности только ложных утверждений?
- Хороший вопрос, дитя мое! - одобрил ШалтайБолтай.
- И ответ на него хороший: "Да". Возьмем любое ложное утверждение. По условию 5 зазеркальный логик либо убежден в истинности этого утверждения, либо убежден в истинности противоположного утверждения. Но в истинности противоположного утверждения он не может быть убежден, так как оно истинно. Следовательно, зазеркальный логик убежден в истинности ложного утверждения.
- Как необычно!-воскликнула Алиса. - Подумать только! Зазеркальный логик убежден в истинности всех ложных и не убежден в истинности истинных утверждений!
- Совершенно верно! - сказал Шалтай-Болтай. - И это самое прекрасное в зазеркальной логике! Не могу не отметить еще одну весьма интересную ее особенность, - добавил он. - Всякий, кто убежден в истинности всех ложных и не убежден в истинности истинных утверждений и честно выражает свои убеждения, повторяю, всякий, кто придерживается таких убеждений, удовлетворяет пяти основным условиям, характеризующим зазеркальных логиков.
- Почему? - спросила Алиса.
- О, это очень легко доказать! - ответил ШалтайБолтай. Представим себе абсолютно честного человека, который убежден в истинности тех и только тех утверждений, которые ложны. Так как он честен, то, разумеется, удовлетворяет условию 1. А как обстоит дело с условием 2? Предположим, этот человек заявляет, что некоторое утверждение истинно. Поскольку он честен, этот человек действительно убежден в истинности того утверждения, .о котором идет речь. Следовательно, неверно, что он не убежден в истинности утверждения. Вместе с тем этот человек убежден в истинности всего, что ложно, даже если речь идет о ложных представлениях о его собственных убеждениях! Таким образом, неверно, что он не убежден в истинности утверждения, а, так как он убежден в истинности всего, что ложно, он должен быть убежден в ложном факте, состоящем в том, будто он не убежден в истинности утверждения. Иначе говоря, наш честный человек убежден, что он не убежден в истинности утверждения. А так как он убежден, что не убежден в истинности утверждения, то он заявляет, что не убежден в его истинности (напоминаю, что речь идет о честном человеке).
Следовательно, наш честный человек удовлетворяет условию 2.
Перейдем теперь к условию 3. Возьмем любое истинное утверждение. Так как оно истинно, то тот. кто убежден в истинности ложных и не убежден в истинности истинных утверждений, не убежден в истинности выбранного нами произвольного истинного утверждения. Так как он не убежден в истинности утверждения, то должен быть убежден, что убежден в его истинности (поскольку все его убеждения правильнее было бы назвать заблуждениями!). А раз он убежден, что убежден в истинности утверждения, он не может не заявить, что убежден в его истинности. Тем самым доказано, что он удовлетворяет условию 3.
- Условия 4 и 5 очевидны, - продолжал ШалтайБолтай, - Возьмем любое утверждение и противоположное утверждение. Одно из них должно быть истинно, другое ложно.
Следовательно, тот, кто убежден в истинности ложных и не убежден в истинности истинных утверждений, убежден в истинности ложного (прямого или противоположного)
утверждения и не убежден в истинности истинного. Значит, он не убежден в истинности обоих утверждений (и поэтому удовлетворяет условию 4), но зато убежден в истинности по крайней мере одного из них (и поэтому удовлетворяет условию 5).
- Вот и вся история, - заключил Шалтай-Болтай. - Зазеркальный логик - человек честный, но судит обо всем превратно. И наоборот, всякий, кто и честен, и судит обо всем превратно, удовлетворяет пяти условиям, отличающим зазеркального логика от прочих смертных. Вот тебе ключ к разгадке всех загадок!
- Одно все-таки мне неясно, - сказала Алиса. - Почему зазеркальный логик никогда не высказывает какое-нибудь утверждение и противоположное утверждение и вместе с тем заявляет, что утверждение и противоположное ему оба истинны?
- Что же тут непонятного? Все очень просто, - возразил Шалтай-Болтай. - Взять, например, утверждение о том, что Черный Король спит. Ему противоположно утверждение о том, что Черный Король бодрствует. Ясно, одно из этих утверждений истинно, а другое ложно. Зазеркальный логик убежден в истинности только того утверждения, которое ложно, поэтому он не может быть убежден в истинности прямого и противоположного утверждения в отдельности. Тем не менее отдельно взятое утверждение о том, что Черный Король одновременно и спит, и бодрствует, ложно.
Следовательно, зазеркальный логик должен быть убежден в его истинности.
А теперь, когда у тебя есть ключ к разгадке, ответы на все мои вопросы покажутся тебе очевидными.
Вот как ответил сам Шалтай-Болтай на свои же вопросы.
1. Так как зазеркальный логик убежден, что Черный Король спит, в действительности Черный Король должен бодрствовать. Следовательно, Алиса не снится Черному Королю. (Под "снится" я отнюдь не имею в виду "грезится наяву"!) А так как Алиса Черному Королю не снится, зазеркальный логик должен быть убежден, что Алиса снится Черному Королю.
2. Так как зазеркальный логик убежден, что либо Черный Король, либо Черная Королева спит, то в действительности неверно, что либо Черный Король, либо Черная Королева спит. Следовательно, они оба бодрствуют. А так как Черная Королева бодрствует, зазеркальный логик должен быть убежден, что она спит (и по той же причине он должен быть убежден, что Черный Король спит).
3. Зазеркальный логик убежден, что Черный Король спит. Это означает лишь, что Черный Король бодрствует, но ничего не говорит нам о том, спит ли Черная Королева или бодрствует. Поэтому мы ничего не можем сказать о том, убежден ли зазеркальный логик, что Черная Королева спит.
4. Иное дело четвертый вопрос! Так как зазеркальный логик убежден, что Черный Король спит. то это неверно, и в действительности Черный Король бодрствует.
Следовательно,-заведомо неверно, что Черный Король и Черная Королева оба спят. Значит, зазеркальный логик должен быть убежден, что Черный Король и Черная Королева оба спят.
Интересно отметить, что при этом зазеркальный логик не обязательно должен быть убежден, что Черная Королева спит.
Однако он убежден, что Черный Король и Черная Королева оба спят!
5. Зазеркальный логик убежден, что Черный Король и Черная Королева оба спят. Это означает лишь, что в действительности по крайней мере один из августейших супругов бодрствует. Мы не знаем, кто именно (Король или Королева) бодрствует, поэтому не можем определить, убежден ли зазеркальный логик, что Черный Король спит, или нет.
6. Так как зазеркальный логик убежден, что Черный Король и Черная Королева либо оба спят, либо оба бодрствуют, то в действительности неверно, что они либо оба спят, либо оба бодрствуют. Значит, один из них спит, а другой бодрствует. О том, кто бодрствует, зазеркальный логик думает, что он (или она) спит. О том, кто спит, зазеркальный логик думает, что она (или он) бодрствует.
7. Так как зазеркальный логик судит обо всем превратно, в действительности Лев должен находиться в лесу без Единорога. Следовательно, Лев в лесу. Значит, зазеркальный логик должен быть убежден, что Льва в лесу нет.
8. Так как зазеркальный логик убежден, что ложное истинно, а истинное ложно, Бармаглот за всю свою жизнь не высказал ни одного истинного утверждения. Все утверждения, высказанные когда-либо Бармаглотом, ложны. Следовательно, зазеркальный логик должен быть убеждена истинности каждого утверждения Бармаглота.
9. Зазеркальный логик убежден, что у всех грифонов есть крылья. Значит, в действительности у грифонов нет крыльев. Но тогда существует по крайней мере один грифон без крыльев. Следовательно, по крайней мере один грифон должен существовать.
10. Этот вопрос "с подвохом", так как неверно, что зазеркальный логик может быть уверен в обоих фактах, о которых говорится в условиях задачи.
Предположим, зазеркальный логик убежден, что Алиса не достигнет восьмой горизонтали, не став королевой. Значит, неверно, что Алиса не достигнет восьмой горизонтали, не став при этом королевой. В свою очередь это означает, что Алиса достигнет восьмой горизонтали, не став королевой.
Следовательно, верно, что Алиса достигнет восьмой горизонтали, а поэтому зазеркальный логик не может быть убежден, что Алиса достигнет восьмой горизонтали.
Глава 11
Теория Черного Короля
На этом месте разговор Алисы с Шалтаем-Болтаем был прерван странным прерывистым рычанием, доносившимся откуда-то издалека и несколько напоминавшим пыхтенье парового двигателя.
- Что это? - с тревогой спросила Алиса.
- Ничего особенного, - ответил Шалтай-Болтай. - Просто Черный Король храпит во сне. На Его Величество стоит взглянуть! Ну и вид у него!
- О да! - сказала Алиса, вспоминая свое первое путешествие в Зазеркалье. - Однажды мне уже приходилось видеть спящего Черного Короля. Тогда я была с Траляля и Труляля, и они сказали мне, что Черный Король видит меня во сне, что я только сон и если Король вдруг проснется, то я сразу потухну, как свеча" Разве не глупо было .с их стороны болтать такую несусветную чепуху?
- А почему же ты не разбудила Черного Короля и не проверила, чепуха это или не чепуха? - спросил Шалтай-Болтай.
- Я уже почти решилась, но потом передумала, - с вызовом сказала Алиса. - Будить Черного Короля было бы очень опрометчиво!
- Не знаю, не знаю, - задумчиво ответил ШалтайБолтай. - Но все равно, если хочешь, можешь пойти и взглянуть на него, а я останусь здесь и порешаю еще логические задачи.
Поняв вежливый намек, Алиса решила, что ей пора двигаться дальше. Она поблагодарила Шалтая-Болтая за весьма полезные уроки логики и прямиком отправилась в лес, туда, откуда слышался храп.
Вскоре она действительно увидела Черного Короля. Он только что проснулся и стоял в окружении Траляля и Труляля, которые не спускали с него глаз.
- Видите, Король проснулся! - закричала Алиса обоим братцам. - А я не погасла, как свеча! Я существую, как прежде! Что вы на это скажете? - -- добавила она торжествующе.
- Думаю, нам лучше вернуться в наш домик, - сказал Труляля, обращаясь к братцу. - Вот-вот разразится ливень.
- Ты можешь остаться здесь, если тебе угодно, - добавил он, взглянув на Алису, - а мы с братцем идем домой.
Алиса взглянула вверх. На небе не было ни облачка.
- Думаю, мне лучше остаться, - сказала она. - Мне нужно поговорить с Черным Королем. Но я хотела бы еще раз поблагодарить вас за чудесные логические игры. Они мне так понравились!
Держа друг друга за руки, братцы медленно поплелись из леса. Проводив их взглядом, Алиса повернулась к Черному Королю, который к тому времени полностью очнулся от сна.
- Ты, должно быть, Алиса! - сказал Черный Король.
- Да, - ответила Алиса, - а как вы узнали?
- Ты знаешь, - сказал Король, - мне только что приснился странный сон! Мне снилось, будто я гулял по лесу с Траляля и Труляля и мы набрели на девочку, которая прикорнула под деревом. Она была очень похожа на тебя.
- Кто это? - спросил я.
- Это Алиса, - ответил Труляля, - и знаете, что ей снится?
- Откуда кто-нибудь может знать, что ей снится? - ответил я. "Ей снитесь вы. Ваше Величество!" - сказал Труляля. Затем оба братца попытались убедить меня, что я сам по себе не существую, а только снюсь тебе и что если ты проснешься, то я сразу - фьють! - потухну, как свеча!
Поэтому, - продолжал Король, - я очень рад видеть тебя наяву и убедиться, что я жив, а не потух - фьють!
- как свеча!
- Какое сверхнеобычное совпадение! - воскликнула Алиса. - То же самое, только наоборот, приключилось со мной, когда я впервые увидела вас, Ваше Величество. Вы тогда спали, а я была с Траляля и Труляля, и они принялись убеждать меня, что я вам только снюсь и, если вы вдруг проснетесь, потухну - фьють! - как свеча!
- Вот видишь, - улыбнулся Черный Король, - а сейчас мы с тобой бодрствуем, и никто из нас не потух - фьють! - как свеча! Сдается мне, что братцы Траляля и Труляля либо заблуждались, либо просто подшучивали над нами!
- Но откуда мне быть уверенной, что я бодрствую?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22