https://wodolei.ru/catalog/stalnye_vanny/
– Прим. И.Д.
Утверждение «машины не могут совершать ошибок» кажется мне курьезным. Его пытаются парировать: «А разве они от этого хуже?» Отнесемся к этому утверждению не столь враждебно и попытаемся понять, что имеют в виду в действительности. Я думаю, что возражение, содержащееся в утверждении «машины не могут совершать ошибок», можно пояснить с помощью «игры в имитацию». Требуется, чтобы задающий вопросы отличил машину от человека, просто задавая им ряд арифметических задач; машина должна разоблачить себя вследствие своей высокой точности. Ответ на эту аргументацию очень прост. Можно сделать так, чтобы машина (запрограммированная для участия в игре) не стремилась давать правильные ответы на арифметические задачи. Она может в известной мере специально вводить ошибки в вычисления, для того чтобы сбить с толку задающего вопросы. Что касается ошибок, связанных с механическими неисправностями, то такие ошибки обнаружат себя, по-видимому, тем, что ошибочный результат в этом случае окажется трудно подвести под некоторый общий род типичных арифметических ошибок. Однако даже такая интерпретация данного возражения не является приемлемой. Размеры настоящей статьи не позволяют нам остановиться на этом более подробно. Мне кажется, что это возражение возникает потому, что смешивают ошибки двух родов. Их можно называть «ошибками функционирования» и «ошибками вывода». Ошибки функционирования происходят вследствие некоторых механических или электрических неисправностей, в результате которых машина ведет себя не так, как это было намечено. В философских дискуссиях обычно отвлекаются от возможности ошибок такого рода; поэтому подвергают рассмотрению «абстрактные машины». Эти абстрактные машины – математические фикции, а не реально существующие объекты. По определению, они не могут иметь ошибок функционирования. В этом смысле мы действительно можем сказать, что «машины никогда не могут ошибаться». Ошибки вывода могут возникать лишь тогда, когда сигналу на выходе машины придан определенный смысл. Например, машина может выдавать в печатном виде математические уравнения или какие-нибудь высказывания на русском (английском) языке. Если при этом печатается ложное предложение, мы говорим, что машина совершила ошибку вывода. У нас, очевидно, вовсе нет оснований для утверждения, что машина не может совершать ошибок этого рода. Например, она может только и делать, что печатать «0=1». В качестве более естественного примера рассмотрим машину, располагающую каким-то методом для того, чтобы делать заключения на основе неполной индукции. Мы должны ожидать, что такой метод в отдельных случаях будет давать ошибочные результаты.На утверждение о том, что машина не может иметь предметом своей мысли самое себя, можно, конечно, дать ответ лишь в том случае, если бы было возможно показать, что машина вообще имеет какие-либо мысли, выражающие какое-либо предметное содержание. Все же выражение «предметное содержание машинных операций» имеет некоторый смысл, по крайней мере для тех, кто имеет дело с машинными вычислениями. Если, например, машина решает уравнение х 2 – 40х – 11 = 0, то уравнение можно считать частью предметного содержания операций машины в данный момент. В этом смысле содержанием операций машины, безусловно, может быть она сама. Ее можно использовать при составлении своей собственной программы или для предсказания последствий, вызываемых изменениями в ее устройстве. Наблюдая результаты своего поведения, машина сможет изменять свои собственные программы с тем, чтобы быть более эффективной в достижений некоторой цели. Все это станет возможно в ближайшем будущем; это не утопические мечты. К сожалению, публикуя статью Тьюринга на страницах газеты, нет возможности даже в краткой степени пояснить, насколько верно здесь Тьюринг смотрел в будущее. – Прим. И.Д.
Возражение, состоящее в том, что машина не отличается разнообразием поведения, является всего лишь способом выражения того обстоятельства, что она не обладает большой емкостью памяти. До самого последнего времени емкость памяти даже в тысячу цифр была очень редкой.Все возражения, которые мы сейчас разбираем, часто являются просто замаскированной формой возражения с точки зрения сознания. Обычно, если утверждают, что машина может выполнить что-нибудь из того, что было перечислено в начале раздела 5, и при этом описывают сущность метода, которым пользуется машина, это не производит большого впечатления. Считают, что, в чем бы ни состоял этот метод, он должен быть весьма элементарным, так как носит механический характер. Сравните сказанное с тем, что говорит Джефферсон (см. эту ссылку). 6. Возражение леди Лавлейс Наиболее подробные сведения, которыми мы располагаем об Аналитической машине Бэббиджа, берутся из воспоминаний леди Лавлейс . Графиня Лавлейс, Ада. Августа (Ada Augusta, the Countess of Lovelace) принадлежала к тем немногим современникам Бэббиджа, которые вполне оценили значение его идей. Она была дочерью английского поэта Байрона (родилась в 1815 г., умерла в 1852 г.). Лавлейс получила хорошее математическое образование, сначала под руководством своей матери, а потом под руководством проф. Августа де Моргана (Augustus de Morgan), одного из создателей математической логики. С Бэббиджем и его машинами она познакомилась еще в юности. В 1840 г. написала о Бэббидже работу и опубликовала ее в Scientific Memoirs (ed. by R. Taylor, 3, 1842, 691–т731), присоединив к ней обширные примечания переводчика, более чем в два раза превосходившие по объему текст Менабреа. Эти примечания относились к принципам работы Аналитической машины и ее применению и были высоко оценены Бэббиджем. См: faster than Thought. A Symposium on Digital Computing Machines Ed. by B.V. Bowden. London, 1953, chap. 1. В приложении к книге воспроизведены работа Менабреа в переводе Лавлейс и работа самой Лавлейс (Notes by the Translator).
В них она высказывает такую мысль: «Аналитическая машина не претендует на то, чтобы создавать что-то действительно новое . Машина может выполнить все то, что мы умеем ей предписать » (курсив леди Лавлейс). Это высказывание цитируется Хартри D.R. Hartree , Calculating Instruments and Machines , New York, 1949.
, который добавляет: «Отсюда не следует, что невозможно сконструировать электронное устройство, которое „мыслит“, или в котором, пользуясь биологическими терминами, можно вырабатывать условные рефлексы, на основе которых становится возможным „обучение“. Увлекательный и будирующий вопрос, подсказанный некоторыми из последних достижений, состоит в том, осуществимо это принципиально или нет. Однако не видно, чтобы машины, построенные или запроектированные до настоящего времени, обладали этим свойством».Я полностью согласен с Хартри по этому вопросу. Следует отметить, что он вовсе не утверждает в категорической форме, что машины, о которых идет речь, не обладают этим свойством. Он лишь замечает, что данные, которыми располагала госпожа Лавлейс, не позволяли ей допустить этого. Весьма возможно, что машины, о которых шла речь, в некотором смысле обладали этим свойством. Действительно, пусть некоторая машина с дискретными состояниями обладает рассматриваемым свойством. Аналитическая машина Бэббиджа была универсальной цифровой вычислительной машиной; это значит, что если бы она обладала нужной емкостью памяти и необходимой скоростью работы, то, будь в нее введена соответствующая программа, она могла бы подражать этой машине. По-видимому, этот довод не приходил в голову ни Бэббиджу, ни графине Лавлейс. Во всяком случае, от них нельзя требовать, чтобы они исчерпали все, что можно сказать по этому вопросу.Весь этот вопрос будет рассмотрен еще раз в разделе, посвященном обучающимся машинам.Один из вариантов аргумента госпожи Лавлейс – это утверждение, гласящее, что машина «никогда не может создать ничего подлинно нового». На секунду возразим поговоркой, что вообще «ничто не ново под Луной». Кто может быть уверенным в том, что выполненная им «оригинальная работа» не была ростком из зерна, посеянного образованием, или просто результатом применения хорошо известных общих принципов. Более удачный вариант этого возражения состоит в утверждении, что «машина никогда не может ничем поразить человека». Это утверждение представляет собой прямой вызов, который, однако, мы можем принять, не уклоняясь. Лично меня машины удивляют очень часто. В основном это происходит потому, что я не могу точно рассчитать, чего можно, а чего нельзя ожидать от них, или (это бывает чаще) потому, что, хотя я и провожу необходимые расчеты, однако делаю это в спешке, неряшливо, рискуя ошибиться. Вот я говорю себе: «По-видимому, электрическое напряжение здесь должно быть таким же, как там: во всяком случае, будем исходить из этого предположения». Само собой разумеется, что в таких случаях я часто ошибаюсь, и получающийся результат оказывается для меня неожиданностью, так как к тому времени, когда эксперимент заканчивается, сделанное допущение уже забыто мною. Эти предположения и натяжки я оставляю открытыми до лекции на тему о моих порочных методах работы. Однако я нисколько не сомневаюсь в том, что действительно испытываю удивление перед машинами.Я не жду, что этот ответ заставит замолчать моего противника. Вероятно, он скажет, что это удивление происходит вследствие некоторого творческого умственного акта с моей стороны и отражает мое недоверие к машине. Но такая аргументация уводит от вопроса о том, может ли машина чем-либо удивить человека, и возвращает снова к возражению с точки зрения сознания. Этот способ аргументации должен, таким образом, считаться исчерпанным, хотя, быть может, стоит все же отметить то обстоятельство, что если нечто поражает нас своей неожиданностью, то удивление, которое мы испытываем, независимо от того, что является его источником: человек, книга, машина или еще что-нибудь, – требует «творческого умственного акта».Мнение о том, что машины не могут чем-либо удивить человека, основывается, как я полагаю, на одном заблуждении, которому в особенности подвержены математики и философы. Я имею в виду предположение о том, что коль скоро какой-то факт стал достоянием разума, тотчас же достоянием разума становятся все следствия из этого факта. Во многих случаях это предположение может быть весьма полезно, но слишком часто забывают, что оно ложно. Естественным следствием из него является взгляд, что якобы нет ничего особенного в умении выводить следствия из имеющихся данных, руководствуясь общими принципами. 7. Возражение, основанное на непрерывности действия нервной системы Нет сомнения в том, что нервная система не является машиной с дискретными состояниями. Небольшая ошибка в информации относительно силы нервного импульса, действующего на нейрон, может привести к значительному изменению импульса на выходе. Исходя из этого, можно было бы как будто предполагать, что нельзя имитировать поведение нервной системы с помощью машины с дискретными состояниями.То, что машина с дискретными состояниями должна отличаться от машины непрерывного действия, это, конечно, справедливо. Однако если мы будем придерживаться условий «игры в имитацию», то задающий вопросы не сможет использовать это различие. Данную ситуацию можно сделать яснее, рассмотрев другую, более простую, машину непрерывного действия. Для этого особенно хорошо подходит дифференциальный анализатор. (Дифференциальный анализатор – это машина определенного рода, не относящаяся к типу машин с дискретными состояниями, применяемая для вычислений некоторых видов . Дифференциальный анализатор – вычислительная машина, разработанная В. Бушем (Vannevar Bush) и его сотрудниками в Массачусетсском технологическом институте в Кембридже (США) в конце 20-х годов и предназначенная для решения широкого класса обыкновенных дифференциальных уравнений. Дифференциальный анализатор – машина непрерывного действия; при решении задач мгновенные значения переменных выражаются положениями вращающихся валов машины (с учетом числа сделанных валом полных оборотов и направления вращения). Первая модель машины была чисто механическим устройством. В дальнейшем дифференциальный анализатор был усовершенствован его автором и превратился в электромеханическую машину.
) Некоторые из дифференциальных анализаторов выдают ответы в напечатанном виде и поэтому пригодны для игры в имитацию. Цифровая вычислительная машина не может предсказать, какие в точности ответы даст дифференциальный анализатор, решая некоторую задачу, но зато она может сама находить ответы правильного характера на ту же задачу. Например, если требуется найти значение числа ПИ (в действительности приблизительно равное 3,1416), то цифровая вычислительная машина могла бы осуществлять случайный выбор его значения из множества чисел – 3,12; 3,13; 3,14; 3,15; 3,16 – имеющих соответственно такие (например) вероятности выбора: 0,05; 0,15; 0,55; 0,18; 0,06. При этих условиях задающему вопросы будет очень трудно отличить дифференциальный анализатор от цифровой вычислительной машины. 8. Возражение с точки зрения неформальности поведения человека Невозможно выработать правила, предписывающие, что именно должен делать человек во всех случаях, при всевозможных обстоятельствах. Например, пусть имеется правило, согласно которому человеку следует остановиться, если включен красный свет светофора, и продолжать движение, если свет зеленый; но как быть, если по ошибке оба световых сигнала появятся одновременно? По-видимому, безопаснее всего остановиться. Однако это решение в дальнейшем может быть источником каких-либо новых затруднений. Рассуждая так, мы приходим к заключению, что любая попытка сформулировать правила действия, предусматривающие любой возможный случай, обречена на провал, даже если ограничиться областью транспортной сигнализации. Со всем этим я согласен.Основываясь на сказанном, доказывают, что мы не можем быть машинами.
1 2 3 4 5 6 7 8
Утверждение «машины не могут совершать ошибок» кажется мне курьезным. Его пытаются парировать: «А разве они от этого хуже?» Отнесемся к этому утверждению не столь враждебно и попытаемся понять, что имеют в виду в действительности. Я думаю, что возражение, содержащееся в утверждении «машины не могут совершать ошибок», можно пояснить с помощью «игры в имитацию». Требуется, чтобы задающий вопросы отличил машину от человека, просто задавая им ряд арифметических задач; машина должна разоблачить себя вследствие своей высокой точности. Ответ на эту аргументацию очень прост. Можно сделать так, чтобы машина (запрограммированная для участия в игре) не стремилась давать правильные ответы на арифметические задачи. Она может в известной мере специально вводить ошибки в вычисления, для того чтобы сбить с толку задающего вопросы. Что касается ошибок, связанных с механическими неисправностями, то такие ошибки обнаружат себя, по-видимому, тем, что ошибочный результат в этом случае окажется трудно подвести под некоторый общий род типичных арифметических ошибок. Однако даже такая интерпретация данного возражения не является приемлемой. Размеры настоящей статьи не позволяют нам остановиться на этом более подробно. Мне кажется, что это возражение возникает потому, что смешивают ошибки двух родов. Их можно называть «ошибками функционирования» и «ошибками вывода». Ошибки функционирования происходят вследствие некоторых механических или электрических неисправностей, в результате которых машина ведет себя не так, как это было намечено. В философских дискуссиях обычно отвлекаются от возможности ошибок такого рода; поэтому подвергают рассмотрению «абстрактные машины». Эти абстрактные машины – математические фикции, а не реально существующие объекты. По определению, они не могут иметь ошибок функционирования. В этом смысле мы действительно можем сказать, что «машины никогда не могут ошибаться». Ошибки вывода могут возникать лишь тогда, когда сигналу на выходе машины придан определенный смысл. Например, машина может выдавать в печатном виде математические уравнения или какие-нибудь высказывания на русском (английском) языке. Если при этом печатается ложное предложение, мы говорим, что машина совершила ошибку вывода. У нас, очевидно, вовсе нет оснований для утверждения, что машина не может совершать ошибок этого рода. Например, она может только и делать, что печатать «0=1». В качестве более естественного примера рассмотрим машину, располагающую каким-то методом для того, чтобы делать заключения на основе неполной индукции. Мы должны ожидать, что такой метод в отдельных случаях будет давать ошибочные результаты.На утверждение о том, что машина не может иметь предметом своей мысли самое себя, можно, конечно, дать ответ лишь в том случае, если бы было возможно показать, что машина вообще имеет какие-либо мысли, выражающие какое-либо предметное содержание. Все же выражение «предметное содержание машинных операций» имеет некоторый смысл, по крайней мере для тех, кто имеет дело с машинными вычислениями. Если, например, машина решает уравнение х 2 – 40х – 11 = 0, то уравнение можно считать частью предметного содержания операций машины в данный момент. В этом смысле содержанием операций машины, безусловно, может быть она сама. Ее можно использовать при составлении своей собственной программы или для предсказания последствий, вызываемых изменениями в ее устройстве. Наблюдая результаты своего поведения, машина сможет изменять свои собственные программы с тем, чтобы быть более эффективной в достижений некоторой цели. Все это станет возможно в ближайшем будущем; это не утопические мечты. К сожалению, публикуя статью Тьюринга на страницах газеты, нет возможности даже в краткой степени пояснить, насколько верно здесь Тьюринг смотрел в будущее. – Прим. И.Д.
Возражение, состоящее в том, что машина не отличается разнообразием поведения, является всего лишь способом выражения того обстоятельства, что она не обладает большой емкостью памяти. До самого последнего времени емкость памяти даже в тысячу цифр была очень редкой.Все возражения, которые мы сейчас разбираем, часто являются просто замаскированной формой возражения с точки зрения сознания. Обычно, если утверждают, что машина может выполнить что-нибудь из того, что было перечислено в начале раздела 5, и при этом описывают сущность метода, которым пользуется машина, это не производит большого впечатления. Считают, что, в чем бы ни состоял этот метод, он должен быть весьма элементарным, так как носит механический характер. Сравните сказанное с тем, что говорит Джефферсон (см. эту ссылку). 6. Возражение леди Лавлейс Наиболее подробные сведения, которыми мы располагаем об Аналитической машине Бэббиджа, берутся из воспоминаний леди Лавлейс . Графиня Лавлейс, Ада. Августа (Ada Augusta, the Countess of Lovelace) принадлежала к тем немногим современникам Бэббиджа, которые вполне оценили значение его идей. Она была дочерью английского поэта Байрона (родилась в 1815 г., умерла в 1852 г.). Лавлейс получила хорошее математическое образование, сначала под руководством своей матери, а потом под руководством проф. Августа де Моргана (Augustus de Morgan), одного из создателей математической логики. С Бэббиджем и его машинами она познакомилась еще в юности. В 1840 г. написала о Бэббидже работу и опубликовала ее в Scientific Memoirs (ed. by R. Taylor, 3, 1842, 691–т731), присоединив к ней обширные примечания переводчика, более чем в два раза превосходившие по объему текст Менабреа. Эти примечания относились к принципам работы Аналитической машины и ее применению и были высоко оценены Бэббиджем. См: faster than Thought. A Symposium on Digital Computing Machines Ed. by B.V. Bowden. London, 1953, chap. 1. В приложении к книге воспроизведены работа Менабреа в переводе Лавлейс и работа самой Лавлейс (Notes by the Translator).
В них она высказывает такую мысль: «Аналитическая машина не претендует на то, чтобы создавать что-то действительно новое . Машина может выполнить все то, что мы умеем ей предписать » (курсив леди Лавлейс). Это высказывание цитируется Хартри D.R. Hartree , Calculating Instruments and Machines , New York, 1949.
, который добавляет: «Отсюда не следует, что невозможно сконструировать электронное устройство, которое „мыслит“, или в котором, пользуясь биологическими терминами, можно вырабатывать условные рефлексы, на основе которых становится возможным „обучение“. Увлекательный и будирующий вопрос, подсказанный некоторыми из последних достижений, состоит в том, осуществимо это принципиально или нет. Однако не видно, чтобы машины, построенные или запроектированные до настоящего времени, обладали этим свойством».Я полностью согласен с Хартри по этому вопросу. Следует отметить, что он вовсе не утверждает в категорической форме, что машины, о которых идет речь, не обладают этим свойством. Он лишь замечает, что данные, которыми располагала госпожа Лавлейс, не позволяли ей допустить этого. Весьма возможно, что машины, о которых шла речь, в некотором смысле обладали этим свойством. Действительно, пусть некоторая машина с дискретными состояниями обладает рассматриваемым свойством. Аналитическая машина Бэббиджа была универсальной цифровой вычислительной машиной; это значит, что если бы она обладала нужной емкостью памяти и необходимой скоростью работы, то, будь в нее введена соответствующая программа, она могла бы подражать этой машине. По-видимому, этот довод не приходил в голову ни Бэббиджу, ни графине Лавлейс. Во всяком случае, от них нельзя требовать, чтобы они исчерпали все, что можно сказать по этому вопросу.Весь этот вопрос будет рассмотрен еще раз в разделе, посвященном обучающимся машинам.Один из вариантов аргумента госпожи Лавлейс – это утверждение, гласящее, что машина «никогда не может создать ничего подлинно нового». На секунду возразим поговоркой, что вообще «ничто не ново под Луной». Кто может быть уверенным в том, что выполненная им «оригинальная работа» не была ростком из зерна, посеянного образованием, или просто результатом применения хорошо известных общих принципов. Более удачный вариант этого возражения состоит в утверждении, что «машина никогда не может ничем поразить человека». Это утверждение представляет собой прямой вызов, который, однако, мы можем принять, не уклоняясь. Лично меня машины удивляют очень часто. В основном это происходит потому, что я не могу точно рассчитать, чего можно, а чего нельзя ожидать от них, или (это бывает чаще) потому, что, хотя я и провожу необходимые расчеты, однако делаю это в спешке, неряшливо, рискуя ошибиться. Вот я говорю себе: «По-видимому, электрическое напряжение здесь должно быть таким же, как там: во всяком случае, будем исходить из этого предположения». Само собой разумеется, что в таких случаях я часто ошибаюсь, и получающийся результат оказывается для меня неожиданностью, так как к тому времени, когда эксперимент заканчивается, сделанное допущение уже забыто мною. Эти предположения и натяжки я оставляю открытыми до лекции на тему о моих порочных методах работы. Однако я нисколько не сомневаюсь в том, что действительно испытываю удивление перед машинами.Я не жду, что этот ответ заставит замолчать моего противника. Вероятно, он скажет, что это удивление происходит вследствие некоторого творческого умственного акта с моей стороны и отражает мое недоверие к машине. Но такая аргументация уводит от вопроса о том, может ли машина чем-либо удивить человека, и возвращает снова к возражению с точки зрения сознания. Этот способ аргументации должен, таким образом, считаться исчерпанным, хотя, быть может, стоит все же отметить то обстоятельство, что если нечто поражает нас своей неожиданностью, то удивление, которое мы испытываем, независимо от того, что является его источником: человек, книга, машина или еще что-нибудь, – требует «творческого умственного акта».Мнение о том, что машины не могут чем-либо удивить человека, основывается, как я полагаю, на одном заблуждении, которому в особенности подвержены математики и философы. Я имею в виду предположение о том, что коль скоро какой-то факт стал достоянием разума, тотчас же достоянием разума становятся все следствия из этого факта. Во многих случаях это предположение может быть весьма полезно, но слишком часто забывают, что оно ложно. Естественным следствием из него является взгляд, что якобы нет ничего особенного в умении выводить следствия из имеющихся данных, руководствуясь общими принципами. 7. Возражение, основанное на непрерывности действия нервной системы Нет сомнения в том, что нервная система не является машиной с дискретными состояниями. Небольшая ошибка в информации относительно силы нервного импульса, действующего на нейрон, может привести к значительному изменению импульса на выходе. Исходя из этого, можно было бы как будто предполагать, что нельзя имитировать поведение нервной системы с помощью машины с дискретными состояниями.То, что машина с дискретными состояниями должна отличаться от машины непрерывного действия, это, конечно, справедливо. Однако если мы будем придерживаться условий «игры в имитацию», то задающий вопросы не сможет использовать это различие. Данную ситуацию можно сделать яснее, рассмотрев другую, более простую, машину непрерывного действия. Для этого особенно хорошо подходит дифференциальный анализатор. (Дифференциальный анализатор – это машина определенного рода, не относящаяся к типу машин с дискретными состояниями, применяемая для вычислений некоторых видов . Дифференциальный анализатор – вычислительная машина, разработанная В. Бушем (Vannevar Bush) и его сотрудниками в Массачусетсском технологическом институте в Кембридже (США) в конце 20-х годов и предназначенная для решения широкого класса обыкновенных дифференциальных уравнений. Дифференциальный анализатор – машина непрерывного действия; при решении задач мгновенные значения переменных выражаются положениями вращающихся валов машины (с учетом числа сделанных валом полных оборотов и направления вращения). Первая модель машины была чисто механическим устройством. В дальнейшем дифференциальный анализатор был усовершенствован его автором и превратился в электромеханическую машину.
) Некоторые из дифференциальных анализаторов выдают ответы в напечатанном виде и поэтому пригодны для игры в имитацию. Цифровая вычислительная машина не может предсказать, какие в точности ответы даст дифференциальный анализатор, решая некоторую задачу, но зато она может сама находить ответы правильного характера на ту же задачу. Например, если требуется найти значение числа ПИ (в действительности приблизительно равное 3,1416), то цифровая вычислительная машина могла бы осуществлять случайный выбор его значения из множества чисел – 3,12; 3,13; 3,14; 3,15; 3,16 – имеющих соответственно такие (например) вероятности выбора: 0,05; 0,15; 0,55; 0,18; 0,06. При этих условиях задающему вопросы будет очень трудно отличить дифференциальный анализатор от цифровой вычислительной машины. 8. Возражение с точки зрения неформальности поведения человека Невозможно выработать правила, предписывающие, что именно должен делать человек во всех случаях, при всевозможных обстоятельствах. Например, пусть имеется правило, согласно которому человеку следует остановиться, если включен красный свет светофора, и продолжать движение, если свет зеленый; но как быть, если по ошибке оба световых сигнала появятся одновременно? По-видимому, безопаснее всего остановиться. Однако это решение в дальнейшем может быть источником каких-либо новых затруднений. Рассуждая так, мы приходим к заключению, что любая попытка сформулировать правила действия, предусматривающие любой возможный случай, обречена на провал, даже если ограничиться областью транспортной сигнализации. Со всем этим я согласен.Основываясь на сказанном, доказывают, что мы не можем быть машинами.
1 2 3 4 5 6 7 8