https://wodolei.ru/catalog/vanni/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Затем осуществляется выбор входов и выходов для исследования с учетом имеющихся средств воздействия на систему и средств наблюдения за ее поведением.
На следующем этапе производятся воздействие на входы системы и регистрация ее выходов. В процессе изучения наблюдатель и «черный ящик» образуют систему с обратной связью, а первичные результаты исследования – множество пар состояний входа и выхода, анализ которых позволяет установить между ними причинно-следственную связь.
В настоящее время известны два вида «черных ящиков». К первому виду относят любой «черный ящик», который может рассматриваться как автомат, называемый конечным или бесконечным. Поведение таких «черных ящиков» известно.
Ко второму виду относятся такие «черные ящики», поведение которых может быть наблюдаемо только в эксперименте. В таком случае в явной или неявной форме высказывается гипотеза о предсказуемости поведения «черного ящика» в вероятностном смысле. Без предварительной гипотезы невозможно любое обобщение или, как говорят, невозможно сделать индуктивное заключение на основе экспериментов с «черным ящиком».
Таким образом, «черный ящик» – это система, в которой входные и выходные величины известны, а внутреннее устройство ее и процессы, происходящие в ней, не известны. Можно только изучать систему по ее входам и выходам, но подобное изучение не позволяет получить полного представления о внутреннем устройстве системы, поскольку одним и тем же поведением могут обладать различные системы.
Следует подчеркнуть, что главной причиной множественности входов и выходов модели «черного ящика» является то, что всякая реальная система, как и любой объект, взаимодействует с объектами внешней среды неограниченное число раз и по разному поводу. Пример с часами можно дополнить такой информацией: часы могут иметь различные «выходы» во внешнюю среду – удобство ношения, прочность, гигиеничность, точность, красота, габариты и т. д.
4.3. Модель состава
Как определить внутреннее устройство «черного ящика», когда это необходимо?
Целостность и обособленность как внутренние свойства системы тем не менее позволяют различать ее составные части, которые в свою очередь (в зависимости от постановки проблемы) могут быть представленными составными частями и элементами.
Элементы – это те части, которые рассматриваются как неделимые. Система разделяется на элементы различными способами в зависимости от формулировки задачи, цели и конкретизации в процессе анализа. Иногда изменяют принцип разбиения, выделяя другие элементы.
Части системы, состоящие более чем из одного элемента, назовем подсистемами. Деление на подсистемы выявляет взаимозависимые элементы с относительно обособленными функциями-подцелями, способствующими достижению общей цели системы. В любом случае, когда речь идет о подсистеме, имеют в виду, что выделенная совокупность сохраняет целостность системы, в отличие от группы элементов, для которых это свойство может не выполняться.
Таким образом, нетрудно представить себе модель состава системы. Например, наручные часы:
• браслет, состоящий из звеньев, защелки, элементов крепления к корпусу часов;
• часы, состоящие из часового механизма, корпуса, крышки и стекла.
Графическая модель модели состава системы представлена на рис. 4.2.
Рис. 4.2. Модель состава
Простейшими моделями состава являются всевозможные классификаторы и неупорядоченные перечни составных частей какой-либо системы.
4.4. Модель структуры
Структурой системы называется совокупность необходимых и достаточных для достижения цели отношений между элементами. В то же время под структурой понимают образ, некоторый рисунок явления или объекта, поэтому говорят, что структура отражает закономерную картину связей элементов системы. Другими словами, структура есть множество элементов, которые взаимодействуют между собой в определенном порядке для осуществления функций системы. Структура определяет организованность системы, упорядоченность ее элементов и связей.
Как следует из определения структуры, в большей степени речь идет о связях между составными частями системы. Очевидно, что о связях между элементами системы можно говорить только после того, как определена модель состава системы, т. е. после того, как рассмотрены сами элементы.
Между реальными частями любой системы имеется невообразимое (может быть, бесконечное) количество отношений в силу бесконечности самой природы. Однако, когда мы рассматриваем некоторую совокупность объектов (частей) как систему, то из всех отношений важными, т. е. существенными, для достижения цели являются только некоторые из них. Точнее, в модель структуры системы мы включаем только конечное число связей, которые, по нашему мнению, существенны по отношению к рассматриваемой цели.
Связь – совокупность зависимостей свойств одного элемента от свойств других элементов системы. Установить связь между двумя элементами – значит, выявить наличие зависимостей их свойств.
Взаимодействие – совокупность взаимосвязей и взаимоотношений между свойствами элементов, когда они приобретают характер взаимодействия друг с другом.
В философии учение о связях – основное понятие при описании явлений и процессов в виде универсального и связанного целого. Связи фигурируют в законах причинности, единства и борьбы противоположностей, содержания и формы, сущности и явления.
Связь как понятие, входящее в любое определение системы, характеризует возникновение и сохранение целостностных свойств системы, она отражает как строение, так и правила функционирования системы.
Связи классифицируют по направленности (направленные и ненаправленные), по параметрам силы (сильные и слабые), по виду управления (подчинения и равноправные связи управления), по месту приложения (внутренние и внешние), по порядку действия (прямые и обратные).
Большое значение для организаций имеют такие типы связей, как:
рекурсивная, т. е. причинно-следственная (связь между производительностью труда и заработной платой);
синергическая в виде кооперативного усиления некоторого явления от совместного действия элементов, приводящая к результату, превышающему суммарный вклад изолированных элементов системы (управленческая команда единомышленников);
циклическая в виде разновидности обратной связи (связи цикла принятия решений, например: проблема – цели – критерии достижения целей – генерирование альтернатив – выбор решения – реализация решения – проблема).
Таким образом, структура системы – это совокупность элементов системы и связей между ними в виде множества.
Графическая модель модели структуры приведена на рис. 4.3.
Рис. 4.3. Модель структурной схемы
Структурные отображения систем являются универсальными средствами их исследования и во многих случаях помогают раскрыть неопределенность.
Например, обычный слесарный молоток представляет собой определенным образом связанную рукоятку и боек. Существенными в данном случае будут отношения между рукояткой и бойком, обеспечивающие прочность (целостность) системы в процессе ее функционирования. При этом несущественным является то, из какого материала сделана рукоятка (металл, древесина или армированная пластмасса).
4.5. Модель структурной схемы
Если систему представить тремя указанными выше моделями, то мы будем иметь представление о том:
• что поступает в систему из внешней среды и что система передает во внешнюю среду;
• из каких частей и элементов состоит система;
• как части системы между собой связаны.
Существует и четвертая модель, которая объединяет три рассмотренные модели, носит название «структурная схема» и изображена на рис. 4.4.
Рис. 4.4. Модель структурной схемы
Подобную модель еще называют «белым, или прозрачным, ящиком» как противоположность модели «черного ящика», которая не дает информации о содержании системы и ее внутренних связях.
Таким образом, можно сформулировать второе определение системы. Система есть совокупность взаимосвязанных элементов, обособленная от среды и взаимодействующая с ней как нечто целое.
Анализ моделей структурной схемы различных систем привел математиков к выводу о том, что общим для всех структурных схем является наличие элементов и связей между ними. В результате получилась схема, в которой обозначается только наличие элементов и связей между ними, а также разница между элементами и связями. Такая схема называется графом.
В теории систем управления используются графы, имеющие линейную (а), древовидную (б), матричную (в) и сетевую (г) структуру (рис. 4.5).
Рис. 4.5. Графы, соответствующие различным структурам
В линейной структуре между элементами системы устанавливается линейная (последовательная) связь.
В иерархической (древовидной) структуре, напоминающей дерево, перевернутое корнем вверх, отражаются связи, определяющие соподчиненность элементов, их иерархию. В теории организации иерархия определяет принципы эффективного функционирования различных видов систем. Иерархические структуры являются декомпозицией системы в пространстве. В теории иерархических структур выделяют особые классы многоуровневых иерархий. Они называются стратами, слоями или эшелонами. Такие иерархии обладают различными принципами взаимоотношений элементов в пределах уровня и приоритетом вмешательства высшего во взаимоотношения элементов нижележащего уровня.
Матричная структура не имеет иерархической направленности, а представляет собой в общем виде связи между элементами в виде сочетания строк и столбцов.
Сетевая структура есть представление (декомпозиция) сложной структуры во времени. Она включает вершины, пути и ребра. Сетевые элементы могут располагаться параллельно и последовательно. Они чаще всего бывают однонаправленными.
4.6. Классификация систем
В основе классификаций систем лежат определения наиболее существенных признаков или их сочетания, которые описывают некоторую общность свойств систем (рис. 4.6).
Рис. 4.6. Классификация систем по сложности и детерминированности
К искусственным системам относятся системы, созданные человеком, а естественные – созданы самой природой.
Различают и такие системы, как детерминированные и вероятностные (стохастические), динамические и статические, с централизованным управлением и самоорганизующиеся.
К детерминированным относятся системы, действие которых однозначно определяется приложенным к ним воздействием (предсказуемо). В противоположность указанным системам в аналогичных условиях действие вероятностных систем случайно.
Различают также открытые и закрытые системы. Закрытые имеют фиксированные границы и относительно независимы от внешней среды (например, часы). Открытые взаимодействуют с внешней средой и приспосабливаются к ее изменениям, обмениваясь с ней ресурсами (например, живой организм).
Закрытая система характеризуется тем, что она не только игнорирует внешнее воздействие (не принимает энергию из внешней среды), но и сама не передает энергию во внешнюю среду.
Открытые системы нацелены на активное взаимодействие с внешней средой. Взаимодействие системы с внешней средой проявляется через обратную связь. Обмен ресурсами поддерживает равновесное положение системы во внешней среде.
Динамические – это системы развивающиеся, изменяющиеся во времени. Статические же системы представляют собой неподвижную модель реальной действительности, отражающие моментальное состояние какого-либо объекта.
Системы, в которых некоторый элемент (центральная подсистема) играет главную роль в ее функционировании, называются централизованными. В таких системах незначительные изменения центральной подсистемы приводят к значительным изменениям всей системы. В децентрализованных системах центральной подсистемы нет; подсистемы имеют примерно равную ценность для системы.
Табличное представление классификации систем приведено в табл. 4.2.
Классификации систем [2, 5]
Таблица 4.2

Чаще всего в процессе исследования систем используются три основных класса: абстрактные, естественные и искусственные. Первые – являются основой для эволюции научных теорий познания, в то время как вторые – для выявления закономерностей и формулирования законов природы всех явлений, третьи – применяются для развития отраслевых научных знаний.
Абстрактные – это системы теоретико-методологического характера, позволяющие описывать общие и специфические свойства организационной структуры элементов, связей и отношений в целостном образовании для познания, изучения и проектирования состояния, поведения и развития исследуемого сложного объекта в качестве системы.
К естественным принято относить те системы, которые имеют естественно-природное происхождение, а к искусственным – все остальные, которые были созданы человеком.
В зависимости от выбора критерия, по которому ведется оценка систем, может быть создано бесконечное множество классов систем. Например, если в основу классификации положить происхождение естественно существующих объектов и объектов, созданных человеком, то можно составить три класса систем: естественные, искусственные и смешанные.
Естественные системы в свою очередь могут включать подсистемы:
• живые (например, любое животное);
• неживые (например, земная кора);
• экологические (например, любой водоем);
• социальные (например, семья) и другие подсистемы.
К искусственным системам обычно относят орудия труда, машины и механизмы, автоматы и роботов.
Смешанные системы объединяют искусственные и естественные системы:
• эргономические (например, токарный станок и токарь);
• биотехнологические (например, микроорганизмы и технологическое оборудование);
• организационные (например, коллектив работников предприятия и средства производства);
• автоматизированные (например, автомат, приводимый в действие оператором).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


А-П

П-Я