https://wodolei.ru/catalog/dushevie_poddony/120x80cm/glubokie/ 

 

Но Ньютон просто постулировал свой принцип относительности; что же касается Эйнштейна, то он явно сформулировал его так, чтобы он был совместим с тем экспериментальным фактом, что скорость света не зависит от скорости движения наблюдателя. В этом смысле упор на симметрию как на вопрос, относящийся к физике, в работе Эйнштейна 1905 г. по специальной теории относительности ознаменовал начало современного отношения к роли принципов симметрии.
Самое важное отличие ньютоновской физики от эйнштейновской при ответе на вопрос, как движение наблюдателя влияет на наблюдение пространственно-временных положений, заключается в том, что в специальной теории относительности утверждение, что два удаленных друг от друга события произошли одновременно, не имеет абсолютного смысла. Один наблюдатель может видеть, что двое часов одновременно бьют полдень; другой наблюдатель, движущийся относительно первого, обнаруживает, что одни часы пробили полдень раньше или позже других. Как уже отмечалось выше, из-за этого ньютоновская теория гравитации, как впрочем и любая аналогичная теория тяготения, несовместима с специальной теорией относительности. Ньютоновская теория утверждает, что в любой момент времени сила притяжения, действующая со стороны Солнца на Землю, зависит от того, где в этот момент находится Солнце. Возникает вопрос: в этот же момент относительно чего?
Естественный способ исправить положение заключается в отказе от старой ньютоновской идеи о мгновенном действии на расстоянии и замене этой идеи картиной сил, обусловленных полями . В такой картине Солнце не притягивает Землю непосредственно; оно создает в окружающем пространстве поле, называемое гравитационным, которое затем оказывает силовое действие на Землю. Может показаться, что такое отличие не составляет большой разницы, но на самом деле разница огромная: когда, например, на поверхности Солнца возникает протуберанец, он сначала оказывает влияние только на гравитационное поле вблизи Солнца, после чего это небольшое изменение поля начинает распространяться в пространстве со скоростью света, как рябь на поверхности воды от брошенного камешка, достигая Земли примерно через восемь минут. Все наблюдатели, движущиеся с любой постоянной скоростью, согласны с таким описанием, так как в специальной теории относительности все наблюдатели измеряют одну и ту же скорость света. Подобным образом электрически заряженное тело создает поле, называемое электромагнитным, действующее посредством электрических и магнитных сил на другие заряженные тела. Когда электрически заряженное тело внезапно приходит в движение, электромагнитное поле меняется сначала только вблизи тела, а затем это изменение поля распространяется со скоростью света. На самом деле в этом случае изменения электромагнитного поля и есть то, что известно нам как свет, хотя это может быть свет такой большой или маленькой длины волны, которая недоступна нашему зрению.
В рамках доквантовой физики специальная теория относительности Эйнштейна хорошо согласовывалась с дуалистичной картиной природы: есть частицы, например электроны, протоны, нейтроны в обычных атомах, и есть поля – гравитационное или электромагнитное. Развитие квантовой механики привело к значительно более единой картине. С точки зрения квантовой механики энергия и импульс поля (например, электромагнитного) распространяются в виде сгустков, называемых фотонами, которые ведут себя как частицы, хотя и не имеющие массы. Аналогично, энергия и импульс гравитационного поля переносятся в виде сгустков, называемых гравитонами, также ведущими себя как частицы с нулевой массой. В длинно-действующем силовом поле вроде гравитационного поля Солнца мы не наблюдаем отдельных гравитонов главным образом потому, что их чрезвычайно много.
В 1929 г. Вернер Гейзенберг и Вольфганг Паули, основываясь на более ранней работе Макса Борна, Гейзенберга, Паскуаля Йордана и Юджина Вигнера, объяснили в нескольких статьях, каким образом массивные частицы, такие как электрон, могут рассматриваться как сгустки энергии и импульса в полях разного типа, например электронном поле. Точно так же, как электромагнитная сила между двумя электронами возникает в рамках квантовой механики в результате обмена фотонами, так и сила между фотонами и электронами порождается обменом электронами. Различие между материей и силой в значительной степени исчезает: каждая частица может играть роль пробного тела, на которое действуют силы, но эта же частица, участвуя в обмене, может порождать другие силы. В наши дни общепринято считать, что единственный способ, позволяющий объединить принципы специальной теории относительности и квантовой механики, достигается в квантовой теории поля или в подобной теории. Это и есть та самая логическая жесткость, которая придает красоту истинно фундаментальной теории: квантовая механика и специальная теория относительности почти несовместимы и их союз в рамках квантовой теории поля накладывает сильные ограничения на возможные способы взаимодействия частиц друг с другом.
Все вышеупомянутые симметрии только ограничивают те типы сил и виды материи, которые может содержать теория, но сами по себе эти симметрии не требуют обязательного существования никакого определенного вида материи или силы. В ХХ в., особенно в последние десятилетия, значение принципов симметрии поднялось на новый качественный уровень: именно они определяют сейчас само существование всех известных сил в природе.
В общей теории относительности основополагающий принцип симметрии утверждает, что все системы отсчета эквивалентны: законы природы выглядят одинаково не только для наблюдателей, движущихся с любой постоянной скоростью, но вообще для всех наблюдателей, как бы ускоренно не двигались и не вращались их лаборатории. Представьте, что мы заберем свои физические приборы из тиши университетской лаборатории и начнем производить эксперименты на равномерно вращающейся карусели. Вместо того, чтобы отсчитывать все направления от севера, мы станем измерять их по отношению к деревянным лошадкам, укрепленным на вращающейся карусели. На первый взгляд все законы природы станут выглядеть совершенно иначе. Наблюдатели на вращающейся карусели ощущают центробежную силу, которая отбрасывает все незакрепленные предметы к наружному борту карусели. Если бы физики родились и выросли на карусели и не знали бы, что они находятся на вращающейся платформе, то сформулированные ими для описания природных явлений законы механики обязательно включали бы центробежную силу так что эти законы выглядели бы существенно иначе, чем те, которые известны нам.
Исаак Ньютон был очень встревожен тем, что законы природы, по-видимому, различают неподвижную и вращающуюся системы отсчета. Это тревожило физиков и в последующие столетия. В 1880-е гг. физик и философ из Вены Эрнст Мах указал на другую возможную интерпретацию этого явления. Мах подчеркнул, что есть еще кое-что, помимо центробежной силы, отличающее вращающуюся карусель от обычной лаборатории. С точки зрения астронома, находящегося на карусели, Солнце, звезды, галактики – короче говоря, вся материя во Вселенной кажется вращающейся вокруг зенита. Вы или я скажем, что это происходит, потому что вращается карусель, но астроном, выросший на карусели и, естественно, использующий ее как систему отсчета, будет настаивать, что вся остальная Вселенная вращается вокруг него. Мах задал вопрос, а нельзя ли рассматривать это великое кажущееся вращение материи как причину возникновения центробежной силы. Если так, то обнаруженные на карусели законы природы на самом деле ничем не отличаются от тех, которые найдены в более привычных лабораториях; кажущаяся разница возникает просто от того, что наблюдатели в разных лабораториях видят вокруг себя разные вещи.
Догадка Маха была подхвачена Эйнштейном и приняла конкретные формы в общей теории относительности. В этой теории действительно существует влияние далеких звезд, создающее эффект центробежной силы на вращающейся карусели. Это сила тяготения. Конечно, в ньютоновской теории тяготения нет ничего, кроме простого притяжения между массами. Общая теория относительности более сложна: вращение материи Вселенной вокруг зенита, наблюдаемое на карусели, порождает поле, чем-то напоминающее магнитное поле, образуемое током, циркулирующим в катушке электромагнита. Именно эта «гравимагнитная» сила производит в системе отсчета, связанной с каруселью, эффекты, которые в более привычных системах отсчета приписываются центробежной силе. Уравнения общей теории относительности, в противоположность уравнениям ньютоновской механики, сохраняют свой вид как в лаборатории на карусели, так и в обычной лаборатории; вся разница в наблюдениях в этих лабораториях полностью связана с разным окружением – в одном случае Вселенная вращается вокруг зенита, в другом случае – нет. Однако, если тяготения не существует, такая интерпретация центробежной силы была бы невозможной, так что сила, которую мы ощущаем, находясь на карусели, позволила бы отличить систему отсчета, связанную с этой каруселью, от более привычных лабораторных систем. Этим была бы исключена какая бы то ни было эквивалентность между вращающимися и неподвижными лабораториями. Отсюда можно сделать вывод: симметрия между различными системами отсчета требует существования гравитации .
Симметрия, которая лежит в основе электрослабой теории, еще более необычна. Она не имеет никакого отношения к изменению нашей точки зрения в пространстве и времени, а связана с изменением нашей точки зрения об идентичности разных типов элементарных частиц. Как мы видели ранее, частица может находиться в таком квантово-механическом состоянии, когда про нее нельзя сказать с достоверностью, что она находится здесь или там или вращается по часовой стрелке или против часовой стрелки. Те же удивительные свойства квантовой механики позволяют частице находиться в состоянии, когда она не является с определенностью ни электроном, ни нейтрино, и это состояние существует до тех пор, пока мы не осуществим измерение некоторого свойства, отличающего эти две частицы, например их электрического заряда. В электрослабой теории форма законов природы не изменяется, если во всех наших уравнениях поменять электроны и нейтрино на такие смешанные состояния, которые не являются ни той, ни другой частицей. Поскольку с электронами и нейтрино взаимодействует множество других типов частиц, то одновременно необходимо перемешать семейства этих других частиц, например смешать u -кварки с d -кварками или фотоны с их родственниками – положительно и отрицательно заряженными W -частицами и нейтральными Z -частицами. Такая симметрия связывает электромагнитные силы, вызываемые обменом фотонами, со слабыми ядерными силами, которые порождаются обменом W – и Z -частицами. В электрослабой теории фотоны, W – и Z -частицы являются сгустками энергии четырех полей, существование которых диктуется симметрией электрослабой теории во многом аналогично тому, как гравитационное поле диктуется симметрией общей теории относительности.
Симметрии, подобные той, которая лежит в основе электрослабой теории, называются внутренними симметриями , так как мы воспринимаем их как некоторое внутреннее свойство частиц, не связанное с их положением в пространстве или характером движения. Внутренние симметрии менее знакомы нам, чем симметрии, действующие в обычном пространстве и времени и определяющие структуру ОТО. Чтобы чуть-чуть лучше понять, о чем идет речь, вы можете представить, что у каждой частицы есть маленький циферблат, стрелка которого показывает направления, помеченные словами «электрон» или «нейтрино», или «фотон» и «W », или находится в любом промежуточном состоянии. Внутренняя симметрия утверждает, что законы природы не меняют своей формы, если мы станем произвольным образом вращать стрелки на этих циферблатах.
Более того, в рамках того типа симметрий, которые определяют электрослабые силы, мы можем вращать эти стрелки по-разному для частиц в разных местах и в разные моменты времени. Это уже во многом похоже на симметрию, лежащую в основе общей теории относительности, которая позволяет поворачивать наши лаборатории не только на постоянный угол, но и на угол, увеличивающийся со временем, если, например, поместить лабораторию на карусель. Инвариантность законов природы по отношению к совокупности преобразований внутренних симметрий, которые зависят от местоположения и времени, называется локальной симметрией (поскольку результат преобразования симметрии зависит от положения в пространстве и времени) или калибровочной симметрией (по чисто историческим причинам). Именно локальная симметрия между разными системами отсчета в пространстве и времени приводит к необходимости существования тяготения. Во многом аналогичным образом другая локальная симметрия – между электронами и нейтрино (а также между u – и d -кварками и т.д.) – приводит к необходимости существования фотона и W – и Z -частиц.
Есть еще и другая точная локальная симметрия, связанная с внутренними свойствами кварков и получившая причудливое название «цвет». Мы видели, что существуют кварки разных типов, например кварки u и d , из которых сделаны протоны и нейтроны, входящие в состав всех обычных атомных ядер. Но кварки каждого из этих типов существуют в трех различных цветовых состояниях, которые физики (по крайней мере в США) часто называют красным, белым и синим. Конечно, все это не имеет никакого отношения к обычному цвету, а есть всего лишь способ отличить разновидности кварков данного типа. Насколько мы сейчас знаем, в природе существует точная симметрия между всеми цветами. Иными словами, сила, действующая между красным и белым кварками, равна силе, действующей между белым и синим кварками, а силы, действующие между двумя красными или двумя синими кварками, также равны друг другу.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41


А-П

П-Я