https://wodolei.ru/catalog/podvesnye_unitazy/Laufen/ 

 

Несомненно, проблемы творчества и возникновения жизни интересны, так как мы живы и хотели бы творить. Но есть и другие вопросы, интересные потому, что они подводят нас все ближе к точке сближения наших объяснений. А открытие истоков Нила – оно ведь ничего не дало для лучшего понимания проблем сельского хозяйства в Египте, но кто скажет, что это открытие было неинтересно?
Во-вторых, здесь упускается из виду, что суть подобных вопросов состоит в объяснении целого «через свои составные части»; однако изучение кварков и электронов фундаментально не потому, что все обычное вещество из них состоит, а потому, что мы думаем, что их изучение позволит нам узнать что-то о принципах , на которых все построено. (Именно эксперимент, в котором электронами обстреливали кварки внутри атомных ядер, решил дело в пользу современной единой теории двух из четырех фундаментальных сил в природе – слабых и электромагнитных сил.) На самом деле физик, занимающийся в наши дни частицами, уделяет больше внимания не содержащимся там кваркам и электронам, а экзотическим частицам, не входящим в обычное вещество, потому что нам кажется, что изучая именно эти частицы, мы быстрее получим ответы на интересующие нас вопросы. Когда Эйнштейн в своей общей теории относительности объяснил природу тяготения, это произошло не «через составные части», а через геометрию пространства-времени. Может так случиться, что физики двадцать первого века обнаружат, что изучение черных дыр или гравитационного излучения дает больше для понимания законов природы, чем физика элементарных частиц. Наша нынешняя сосредоточенность на элементарных частицах основана на тактическом соображении, что в данный момент истории науки именно этот путь ведет нас к окончательной теории.
Наконец, нужно еще установить, действительно ли существуют новые законы, управляющие сложными системами? Да, конечно, это так в том смысле, что разные уровни восприятия требуют разного языка для описания и анализа. Это в равной степени относится и к химии, и к хаосу. Но фундаментальны ли новые законы? Контрпримером является упомянутая Глейком толпа линчевателей. Можно попытаться сформулировать все, что мы знаем о толпах, в форме законов (таких, например, как старое изречение, что революции всегда пожирают своих детей), но если мы попросим объяснить, почему эти законы действуют, нас вряд ли удовлетворит ответ, что это – фундаментальные законы, не имеющие объяснений через что-то другое. Мы скорее будем искать редукционистское объяснение, основанное на психологии отдельных людей. Это же верно и в отношении установления хаоса. Поразительный прогресс, достигнутый в последние годы в этой области, заключался не только в наблюдении хаотических систем и формулировке эмпирических законов, управляющих ими; что значительно важнее, законы, которым подчиняется хаотическое поведение, были математически выведены из законов микрофизики, управляющих теми системами, в которых возникает хаос.
Я подозреваю, что все работающие ученые (и, возможно, вообще большинство людей) являются на практике такими же редукционистами, как я, хотя некоторые из них, вроде Эрнста Майра или Филиппа Андерсона, не любят употреблять этот термин. Например, медицинские исследования имеют дело с проблемами столь неотложными и трудными, что часто предложения новых методов лечения вынуждены опираться только на медицинскую статистику а не на понимание того, почему этот метод приносит плоды. Но даже если новая методика предложена на основании проверки на многих пациентах, к ней, скорее всего, будут относиться со скептицизмом до тех пор, пока не удастся понять, как можно объяснить новый метод на основе редукционизма с помощью таких наук, как биохимия или биология клетки. Представьте, что медицинский журнал поместил две статьи, описывающие два новых способа лечения золотухи: с помощью приема внутрь куриного бульона и с помощью прикосновения короля. Даже если статистические данные, представленные в каждой из статей, одинаково убедительны, я полагаю, что медики (да и кто угодно) по-разному прореагируют на эти статьи. В том, что касается куриного бульона, думаю, что большинство людей отнесется к этому методу непредвзято, сохранив право на окончательное суждение до тех пор, пока он не будет независимо проверен. В конце концов, куриный бульон – это смесь очень полезных веществ, и кто знает, какой эффект могут оказывать его составные части на микобактерию, вызывающую золотуху? С другой стороны, какие бы статистические данные ни приводились, чтобы доказать, что прикосновение руки короля помогает излечить золотуху, читатели статьи остались бы в глубоком сомнении, подозревая обман или случайное совпадение, так как они не смогли бы представить себе, как можно было бы хоть когда-нибудь редуктивно объяснить такой метод лечения. Какое дело микобактерии, был ли человек, прикасающийся к больному, должным образом коронован и помазан на царство, или это просто старший сын предыдущего монарха? (Даже в средние века, когда все считали, что прикосновение короля излечивает золотуху, сами короли, похоже, сильно в этом сомневались. Насколько я знаю, во всех средневековых битвах между соперничавшими династиями, например между Плантагенетами и Валуа или Йорками и Ланкастерами, ни один из претендентов на трон ни разу не пытался доказать, что он истинный король, путем демонстрации излечивающей силы своего прикосновения.) Те нынешние биологи, которые попытались бы утверждать, что подобное лечение не требует объяснения, так как сила королевского прикосновения является автономным законом природы, не встретили бы понимания со стороны коллег с редукционистским мировоззрением, так как в его рамках таким автономным законам нет места.
То же самое верно и в отношении всех наук. Мы не должны серьезно относиться к предлагаемым автономным законам макроэкономики, которые не могут быть в принципе объяснены поведением отдельных личностей, или к гипотезам о происхождении сверхпроводимости, которые не могут быть в принципе объяснены свойствами электронов, фотонов и ядер. Редукционистская позиция является хорошим фильтром, позволяющим ученым во всех областях знания не тратить время на обсуждение малообещающих идей. В этом смысле мы все сейчас редукционисты.
Глава IV. Квантовая механика и ее критики
Играющий ставил шар на стол и ударял по шару кием. Следя за катящимся шаром, мистер Томпкинс к своему большому удивлению заметил, что шар начал «расплываться». Это было единственное выражение, которое пришло ему на ум при виде странного поведения бильярдного шара, который, катясь по зеленому полю, казался все более и более размытым, на глазах утрачивая четкость своих контуров. Казалось, что по зеленому сукну катится не один шар, а множество шаров, к тому же частично проникающих друг в друга. Мистеру Томпкинсу часто случалось наблюдать подобные явления и прежде, но сегодня он не принял ни капли виски и не мог понять, почему так происходит.
Георгий Гамов. Мистер Томпкинс исследует атом

Открытие квантовой механики в середине 1920-х гг. было самой глубокой революцией в физической теории с момента зарождения современной физики в XVII в. Когда мы рассматривали выше свойства кусочка мела, наша цепочка вопросов снова и снова приводила к ответам, сформулированным на языке квантовой механики. Все затейливые математические теории, которыми в последние годы занимаются физики, – квантовые теории поля, калибровочные теории, теории суперструн – все они формулируются в рамках квантовой механики. Если и есть что-то в нашем сегодняшнем понимании природы, что имеет шанс выжить в окончательной теории, так это квантовая механика.
Историческая важность квантовой механики состоит не только в том, что она дала ответы на многие старые вопросы об устройстве материи; значительно важнее, что она изменила наши представления о тех вопросах, которые нам разрешено задавать. С точки зрения последователей ньютоновской физики, теории предназначены для того, чтобы обеспечивать математический аппарат, позволяющий физикам вычислять положения и скорости частиц в любой системе во все будущие моменты времени, если полностью известны (что никогда не реализуется на практике) значения этих величин в любой данный момент времени. Однако квантовая механика принесла с собой совершенно иной способ описания состояния системы. В ней мы используем математические конструкции, называемые волновыми функциями, которые дают информацию только о вероятностях возможных значений положений и скоростей частиц в системе. Это изменение взгляда столь глубоко, что физики сейчас используют слово «классический» не по отношению к древним грекам и римлянам или к Моцарту и т.д., а по отношению к периоду «до квантовой механики».
Если попытаться назвать момент, когда родилась квантовая механика, то, наверное, им должен стать тот отпуск, который устроил себе молодой Вернер Гейзенберг в 1925 г. Страдая от сенной лихорадки, Гейзенберг сбежал от цветущих лугов вблизи Гёттингена на пустынный остров Гельголанд в Северном море. До этого Гейзенберг и его коллеги в течение нескольких лет пытались разрешить проблему, возникшую в 1913 г. в построенной Нильсом Бором теории атома: почему электроны в атоме занимают только некоторые разрешенные орбиты с определенными энергиями? На Гельголанде Гейзенберг начал обдумывать все сначала. Он решил, что поскольку никто не может непосредственно наблюдать орбиту электрона в атоме, он будет пытаться иметь дело только с величинами, которые можно измерить, а именно с энергиями квантовых состояний , в которых все электроны атома занимают разрешенные орбиты, и со скоростями спонтанного перехода атома из одного такого состояния в любое другое состояние с испусканием при этом частицы света (фотона). Из этих скоростей перехода Гейзенберг составил то, что он назвал «таблицей», затем ввел математические операции с этой таблицей, приводившие к появлению новых таблиц, причем каждой физической величине, например положению электрона, его скорости или квадрату скорости, соответствовала своя таблица. Зная зависимость энергии частицы в простой системе от скорости и положения, Гейзенберг сумел вычислить таблицу энергий системы в разных квантовых состояниях, в определенном смысле пародируя тот способ, которым ньютоновская физика вычисляет энергию планеты по известным значениям ее скорости и положения.
Если то, что сделал Гейзенберг, озадачивает читателя, то вы, читатель, не одиноки. Несколько раз я пытался прочесть статью, написанную Гейзенбергом по возвращении с Гельголанда и, хотя, как мне кажется, я понимаю квантовую механику, мне никогда не удавалось понять те мотивы, которые побудили Гейзенберга к математическим действиям в его работе. Физики-теоретики в своих самых удачных работах стремятся сыграть одну из двух ролей: они выступают либо как мудрецы , либо как волшебники . Физик-мудрец рассуждает в определенном порядке о физических проблемах, основываясь на фундаментальных идеях о том, как устроена природа. Например, Эйнштейн, развивая общую теорию относительности, играл роль мудреца; перед ним стояла четко очерченная проблема – как совместить теорию тяготения с новым взглядом на пространство и время, предложенным им в 1905 г. в специальной теории относительности. В руках у него было несколько ценных ключей к разгадке, в частности важный факт, открытый Галилеем, что движение небольших тел в гравитационном поле не зависит от природы этих тел. Это позволило Эйнштейну предположить, что тяготение может быть свойством самого? пространства-времени. Кроме того, Эйнштейну была известна хорошо развитая математическая теория искривленных пространств, разработанная еще в XIX в. Риманом и другими математиками. В наше время вполне можно преподавать общую теорию относительности, следуя практически тем же аргументам, которые использовал Эйнштейн в своей заключительной работе 1915 г. Но есть и физики-волшебники, которые, кажется, совершенно не размышляют, а, перескакивая через все промежуточные ступени, сразу приходят к новому взгляду на природу. Авторы учебников по физике обычно пытаются переложить работы волшебников на другой язык, так что они становятся похожи на работы мудрецов, иначе ни один читатель не смог бы понять физику. Планк выступил как волшебник, предложив в 1900 г. свою теорию теплового излучения, да и Эйнштейн отчасти был им, когда в 1905 г. ввел понятие фотонов. (Возможно, именно поэтому он позднее расценивал теорию фотонов как самое революционное из своих достижений.) Обычно не очень трудно понять работы физиков-мудрецов, но работы физиков-волшебников часто совершенно невразумительны. В этом смысле статья Гейзенберга 1925 г. была чистой магией.
Может быть, и не следует так внимательно читать первую статью Гейзенберга. Он общался со множеством одаренных физиков-теоретиков, включая Макса Борна и Паскуаля Йордана в Германии и Поля Дирака в Англии, так что к концу 1925 г. эти ученые превратили идеи Гейзенберга в понятную и систематическую версию квантовой механики, называемую в наше время матричной механикой. В январе следующего года в Гамбурге школьный приятель Гейзенберга Вольфганг Паули сумел применить новую матричную механику к решению основополагающей задачи атомной физики – расчету энергий квантовых состояний атома водорода, подтвердив тем самым результаты, полученные ранее Бором на основе полуклассических постулатов.
Проведенный Паули квантовомеханический расчет уровней энергии водорода был блистательной демонстрацией математического искусства, мудрым использованием найденных Гейзенбергом правил и особых симметрий атома водорода. Хотя Гейзенберг и Дирак, может быть, были более плодотворными, чем Паули, ни один из живших тогда физиков не был более умным. Но даже Паули не сумел применить свои вычислительные приемы к следующему по сложности атому гелия, не говоря уже о более тяжелых атомах или молекулах.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41


А-П

П-Я