аква родос мебель для ванной 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Другой разновидностью полифункционирования
является изъятие из какой-либо фн. ячейки системы фщ. единицы x и помещение
туда фщ. единицы y или z, вследствие чего фн. свойства данного системного
образования соответственно изменятся. При обратном перемещении фщ. единиц
система вновь обретает свои первоначальные фн. свойства; и поэтому, чем
большую замену фщ. единиц в своих ячейках допускает в некоторый отрезок
времени данная система, тем выше коэффициент ее полифункционирования. В этом
случае примерами могут служить все обратимые химические реакции замещения типа
H2O + Cl2 = 2HCl + O2 и т.п., ячейки углеводородного радикала R в структуре
аминокислот и т.д.
Аминокислоты, входя в состав белковой молекулы, сохраняют свободными и
реакционноспособными свои специфические полифункциональные ячейки, химические
функции которых состоят в способности присоединять различные системные
группировки. Это обусловливает взаимодействие белков с самыми различными
веществами, создает исключительные химические возможности, которыми не
обладают никакие другие вещества данного подуровня. В силу этого белки,
входящие, например, в состав живой протоплазмы, сочетаются в комплексы с
другими соединениями - от воды и минеральных веществ до всевозможных
органических соединений, в том числе и с другими белками. Эти комплексы, в
зависимости от образующего их фактора, могут быть довольно устойчивыми и
образовываться в количествах, необходимых для построения гиперсистем.
Примерами таких комплексов служат разнообразные сложные белки -
нуклеопротеиды, хромопротеиды, липопротеиды, металлопротеиды и т.п. Они
участвуют в построении гиперсистемных структур и, вместе с тем, играют большую
роль в их функционировании благодаря своим каталитическим свойствам. Наряду с
устойчивыми соединениями белки способны образовывать и крайне эфемерные
комплексы, период функционирования которых сравнительно небольшой. Подчиняясь
соответствующим алгоритмам, эти соединения быстро возникают и,
отфункционировав, также быстро разлагаются. Таким образом, через механизм
полифункциониравания самые разнообразные элементы из аккумулятивных подсистем
вовлекаются в обмен веществ живой организации Материи для временного
использования их фн. свойств в том или ином системном образовании.
При заполнении фн. ячеек многомолекулярных соединений отдельными
индивидуальными белками - фщ. единицами образуются новые системные единицы,
физические и химические свойства которых существенно отличаются от свойств
входящих в их состав отдельных белков. Ассоциируясь между собой, белки
образуют целые молекулярные рои, представляющие собой различные структурные
образования живого вещества. Весьма существенным является и то, что фн.
свойства белков, их способность реагировать с разнообразными веществами и
ассоциироваться в многомолекулярные комплексы определяется не только составом
и расположением аминокислотных остатков, но и пространственной конфигурацией
белковой молекулы, то есть относительным расположением в пространстве
отдельных частей ее структуры. Химическое взаимодействие боковых радикалов и
полярных групп аминокислотных остатков, действуя внутримолекулярно, приводит к
закономерному скручиванию пептидных цепей белковой молекулы и объединению их в
клубки, в так называемые белковые глобулы, обладающие упорядоченной
пространственной конфигурацией. Во внутреннем строении белковых глобул
отдельные участки пептидных цепей и замкнутых колец оказываются определенным
образом расположенными по отношению друг к другу и взаимно закрепленными путем
сшивания этих участков водородными или другими прочными связями. Такого рода
строение обусловливает определенные размеры и форму белковых глобул. Она может
приближаться к шаровидной или быть сильно вытянутой. Те или иные изменения
окружающей глобулу внешней среды сильно влияют на ее форму, сильно сжимая или,
наоборот, растягивая ее. В зависимости от того, какие активные группировки фщ.
единиц аминокислотных остатков при данной конфигурации глобулярного клубка
оказываются расположенными на поверхности и, следовательно, доступными
химическому взаимодействию и какие будут скрыты в глубине, защищены,
"экранированы" соседними группировками, зависят изменяющиеся фн. свойства
белка, даже при сохранении постоянным его аминокислотного состава. Поэтому
даже очень небольшие изменения пространственной архитектоники глобулы
оказывают решающее влияние на химическую реактивность белка и на те тонко
нюансированные его свойства, которые определяют собой биологическую
специфичность каждого индивидуального белкового соединения. Этот созданный в
процессе Развития Материи еще один, более сложный и тонкий механизм
полифункционирования способствовал диктуемому законами Развития ускоренному
движению Материи по категории качества (). Его роль для организации живого
вещества особенно возросла после того, как определилась основная функця этого
механизма - путем изменения конфигурации белковых глобул осуществлять
регулирование их ферментативной активности.
Известно, что химические реакции между органическими соединениями
совершаются в живых организмах с очень большими скоростями, хотя и вполне
измеримыми, но совершенно несравнимыми с теми, которые наблюдаются при
взаимодействии этих соединений в изолированном и очищенном виде вне структур
живых тел. Причина этого заключается в том, что в составе живой протоплазмы
всегда присутствуют особые биологические ускорители - ферменты, называемые
протеинами (простые белки) или протеидами (сложные белки), в которых белок
соединен в комплексе с небелковой ("простетической") группой - в большинстве
случаев с металлоорганическим соединением или тем или иным витамином. В силу
этого в каждой живой клетке присутствует целый набор разнообразных ферментов,
поскольку ферментативной активностью обладает большинство протеинов и
протеидов живого организма. Таким образом, ферменты составляют основную массу
протоплазменных белков. То обстоятельство, что основой ферментных комплексов
всегда являются обладающие определенной архитектоникой те или иные белковые
глобулы, обусловливает ряд особенностей, которые отличают ферменты от других
катализаторов. Это прежде всего исключительная каталитическая мощь ферментов.
Известно большое число неорганических и органических соединений низших
организационых уровней, способных ускорять те же реакции, что и ферменты.
Механизм действия любого катализатора весьма прост и напоминает действие
ключа, вводимого в ту или иную систему. При реакциях распада свободные связи
катализатора нейтрализуют силы связи, объединяющие вместе фщ. единицы в единую
систему, и она распадается на составные части. В реакциях синтеза катализатор
путем предоставления своих свободных связей ускоряет процесс объединения фщ.
единиц. Однако, сложность и совершенство системной структуры ферментов намного
повысили силу их каталитического воздействия по сравнению с менее
организованными катализаторами, что нашло свое отражение в сокращении времени
протекания реакций, то есть перестроения структуры-принципала. Так, например,
ион железа разлагает перекись водорода на кислород и воду. Соответствующий
фермент (каталаза), представляющий собой сочетание железо-порфиринового
комплекса со специфическим белком, обладает тем же действием. Но он
осуществляет эту реакцию в десять миллиардов раз скорее, чем неорганическое
железо. Иными словами, 1 мг железа, включенный в ферментный комплекс, может по
своему каталитическому действию заменить 10 тонн неорганического железа. Таким
образом, ферменты являются относительно сложными системными образованиями
уровня З, функция которых заключается в обеспечении регулирования в
определенном диапазоне времени структурных перестроений гиперсистем, в которые
они входят, в соответствии с предписаниями усложняющихся алгоритмов
гиперполифункционирования, то есть корреляции системных структур в зависимости
от изменения их фн. свойств. Поэтому даже незначительные изменения в
структурном строении ферментного комплекса, перестановка тех или иных
радикалов в простетической группе или нарушение архитектоники белкового
компонента приводят к резкому понижению каталитической активности данного
фермента. Следовательно, в системной организации ферментов также
подтверждается то соответствие между структурным построением фн. ячеек и
функцией всей данной системы, которое является закономерным для всех ступеней
и уровней каскадного Развития Материи вообще.
Пространственная конфигурация белковых глобул определяет собой и вторую
особенность ферментов - высокую специфичность их действия, то есть
монофункционирование. Иными словами, каждый фермент способен катализировать
только свою, строго определенную реакцию. Поэтому, если имеется какое-либо
органическое вещество, способное к ряду химических соединений, то в
присутствии того или иного фермента оно будет быстро реагировать только в
одном, строго определенном направлении, выполняя тем самым соответствующий
алгоритм данной системы.
Наконец, специфическое строение белков обусловливает собой и третье
характерное для ферментов свойство - их исключительную чувствительность к
различного рода воздействиям. Так, при определенных физических или химических
воздействиях самого различного рода (даже тогда, когда эти воздействия не
затрагивают пептидных и других ковалентных связей белковой молекулы)
специфическая пространственная архитектоника глобулы может измениться и даже
нарушиться, а ее упорядоченная структурная конфигурация необратимо утратится.
В этом случае пептидные цепи принимают беспорядочное пространственное
расположение и белок из глобулярного состояния переходит в фибриллярное -
происходит так называемая денатурация белков, при которой они теряют ряд тех
своих специфических биологически важных свойств, которые обусловливаются
определенной архитектоникой каждого типа белковой молекулы. Совершенно
исчезают при этом ферментативные свойства белков. Однако при более мягких
воздействиях каталитическая активность ферментного комплекса может до
известной степени сохраняться, претерпевая лишь те или иные количественные
сдвиги. Поэтому любые, даже весьма незначительные, изменения физических или
химических условий в той среде, где протекает данная ферментативная реакция,
всегда находят свое отражение в изменении ее характера и скорости. Все эти
свойства белков составляли основу качественного Развития Материи по
организационному уровню З, в системах которого происходила все большая фн.
дифференциация фщ. единиц и структурная интеграция фн. ячеек.
Каждая фщ. единица, попав в соответствующую ей фн. ячейку, функционирует в
ней определенный алгоритмами период, после чего покидает ее, уступая место
новой фщ. единице с теми же фн. свойствами. Покинув одну фн. ячейку, фщ.
единица перемещается в предписанную ей алгоритмами другую ячейку и т.д.
Процесс этот происходит постоянно, периодически возобновляясь и повторяясь,
отчего создается впечатление движения фщ. единиц - веществ через системную
структуру каждого данного образования, во время которого система поглощает фщ.
единицы (или их комплексы), некоторое время использует их внутри себя, а затем
выводит за свои пределы. Это непрекращающееся движение регулируется и
регламентируется совокупностью соответствующих алгоритмов каждой системы, в то
время как постоянно протекающие в системе реакции придают ей своеобразную
"живость". В силу этого при так называемом обмене веществ очень простые и
порой однообразные химические реакции окисления, восстановления, гидролиза,
фосфоролиза, альдольного уплотнения, разрыва углеродной связи и т.д. (которые
могут быть воспроизведены и вне системы организма) определенным образом
организованы и сочетаются во времени соответствующими алгоритмами, а также
подчинены функциональным интересам своей системы, как интегрированного единого
целого. Эти реакции протекают в системах уровня З не случайно, не хаотически,
а в строго определенной взаимопоследовательности, зафиксированной алгоритмами.
То колоссальное разнообразие органических соединений, которое к настоящему
времени представлено в мире живых существ, обусловлено не разнообразием и
сложностью отдельных индивидуальных реакций, а разнообразием их сочетаний,
изменением той последовательности, в которой они протекают в любой клетке
живого организма на той или иной стадии его развития. Другими словами,
развитие систем данного уровня организации Материи оказалось в еще большей
зависимости от появления новых алгоритмов, совершенствования структур фн.
ячеек и своевременного заполнения их соответствующими фщ. единицами.
Последовательность химических реакций, обусловленная соответствующими
алгоритмами, лежит в основе как синтеза, так и распада живого вещества, в
основе таких жизненных явлений, как брожение, дыхание, фотосинтез и т.д.
Молекулы сахара и кислорода, углекислоты и воды являются в этом случае лишь
начальными и конечными звеньями в длинной цепи химических превращений, причем
возникающее в результате одной реакции промежуточное вещество (фщ. комплекс)
сейчас же вступает в следующую строго определенную для данного жизненного
процесса реакцию.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34


А-П

П-Я