https://wodolei.ru/catalog/unitazy/Jika/lyra/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


— Но ведь основная масса преследователей не пострадает, — вступил в разговор штурман, — одиночная черная дыра, как и одиночная нейтронная звезда или же белый карлик, — вообще говоря, любая одиночная звезда без массивных планет или же без звезды-спутника обладает достаточно стабильным распределением массы и энергии в пространстве и это распределение можно легко узнать из давно уже сделанных и проверенных звездных карт. Одиночный космический объект нам не подходит, — подытожил он. — Нам нужен периодический процесс, желательно не взрывного характера, а такие процессы идут у двойных звезд.
— А что, — обдумав эту мысль, сказал я, — если рассмотреть рентгеновский пульсар? Это система, состоящая из двух звезд, в которой идет процесс обмена массой, и плазма с обычной звезды перетекает на нейтронную, но непосредственно на звезду вещество не попадает, так как этому препятствует очень сильное магнитное поле нейтронной звезды. В дальнейшем плазма получает возможность поступать в магнитосферу и по силовым линиям скатывается на магнитные полюса звезды. Там вещество ударяется о твердую поверхность нейтронной звезды со скоростью, достигающей одной трети скорости света и разогревается до температуры в несколько миллиардов градусов, в результате чего звезда излучает с обоих магнитных полюсов два потока рентгеновских лучей, которые вращаются вместе со звездой, как два гигантских прожектора. В непосредственной близости от такого монстра нам делать нечего, тем более, учитывая его исполинское магнитное поле, а вот чуть дальше от него мы получим то, что хотим: период вращения пучков излучения обычно составляет более ста секунд, а это значит, что каждые несколько минут распределение вещества и энергии в системе будет резко меняться — как гигантской метлой пульсар сотрет все следы нашего прыжка, а если мы еще и выстрелим перед ним — тогда ищи-свищи ветра в поле!
— Отличная мысль! — одобрил второй пилот, а потом на мгновение глянув на свои приборы, продолжил, — и главное для нас — это не попасть в пучок излучения.
— А что, если вместо рентгеновского пульсара рассмотреть рентгеновский барстер? — предложил первый пилот. — И пусть в нем идут взрывные процессы, но он, по моему мнению, не настолько опасен как пульсар, который мне совсем не нравится: пульсар вращается исключительно быстро, притом что его светимость может быть как у тысяч и даже сотен тысяч Солнц — малейшая ошибка или же неточность — и всем конец — звездолет разорвет на куски!
У барстера же напряженность магнитного поля в десятки тысяч раз меньше, чем у рентгеновского пульсара, поэтому процесс обмена массой в такой двойной системе протекает аналогично процессам, в результате который взрываются новые звезды, только вместо белого карлика там находится нейтронная звезда: то же самое вещество, та же самая плазма с нормальной звезды — с обычного с красного карлика — постепенно перетекает на нейтронную. Когда температура и плотность гелия на поверхности звезды достигнут определенных критических значений, тогда произойдет термоядерный взрыв. Время между взрывами новых звезд велико, достигая сотен лет, а в данном случае период равен нескольким часам: все дело в том, что площадь поверхности нейтронной звезды в миллион раз меньше площади поверхности белого карлика, поэтому температура и плотность, необходимые для термоядерного взрыва в этом случае достигаются гораздо раньше, и сам взрыв получается гораздо слабее — со светимостью примерно в несколько десятков тысяч Солнц. Нам нужно просто рассчитать минимальное расстояние, меньше которого к двойной приближаться нельзя, — и все будет в порядке: как и рентгеновский пульсар, вспышка барстера вычистит космос ото всех следов нашего пребывания, дав нам возможность спокойно прыгнуть и оторваться от преследования.
— Итак, мы нашли еще и барстеры. Поздравляю, — похвалил их я. — Первый и второй пилоты, выполните необходимые расчеты, а мы со штурманом тем временем поищем такие объекты в районе боевых действий, — приказал я.
Мы, конечно же, все хорошо продумали, но и наши враги тоже будут думать; кроме того, не следует забывать, что кто-нибудь другой раньше нас может сделать нечто подобное, а это будет означать, что противник подготовится и поставит заградительные отряды возле всех этих двойных. И неважно, кто первым применит технологию отрыва от погони с использованием двойных звезд: мы или они, а важно то, что рано или поздно мы столкнемся с неприятелем как раз там, где будем надеяться на спасение. Вряд ли мы выпрыгнем близко к ним, как раз под выстрел вражеских крейсеров — космос велик, и им для этого должно очень хорошо повезти, но то, что в конце концов свои корабли неприятель расставит так, чтобы мы мы ни в коем случае не оторвались от погони — это яснее ясного; таким образом, мы будем принужден прыгать наугад — и это все, что нам останется. Но самый лучший вариант — это согласовать свои действия с командованием для того, чтобы оно постаралось поставить вспомогательные отряды ко всем этим космическим объектам, и чтобы ради нашего спасения бойцы удерживали их от захвата противником, однако, как мне думается, пока что это нереально: ради одного корабля руководство делать ничего такого не будет — только если поставить технологию атак на планеты на поток, тогда это станет вполне возможным, но, как мне кажется, у такой технологии есть один принципиальный недостаток — она не гарантирует успеха (иначе почему за более чем два месяца войны всего лишь несколько экипажей смогли сделать нечто подобное?), и поэтому, скорее всего, подытоживая все вышесказанное, пока мы должны будем рассчитывать исключительно на свои силы. Но события, предоставленные сами себе, имеют тенденцию развиваться от плохого к еще более худшему, поэтому нам надо рассчитывать именно на худшее потому, что если вдруг у нас получится лучший результат, то мы будем радоваться ему, ну а если же нам не повезет, то мы будем готовы к этому!
Итак, пусть к своим мы уйти не сможем — у нас на это не хватит времени, и следовательно, противник настигнет нас. Оторваться от него мы сможем только там, где никто не думает об этом, то есть там, где очень опасно. В двойной звездной системе, находящейся в режиме обмена массой, вроде пульсара или барстера — опасно, но в целом эти опасности какие-то легко прогнозируемые, а значит, их также легко можно избежать, однако сама суть моей новой идеи заключается в том, что сложность или же опасность должны быть для наших преследователей, но отнюдь не для нас!
Это хорошая мысль — рассуждаем дальше: у нас должно быть то, чего нет у преследователей, чтобы с помощью этого мы могли бы преодолевать трудности, которые будут непреодолимы для них. Принимаем, что для любого объекта физические условия и для нас, и для наших противников будут одинаковы; знания о природе звезд мы все черпаем из одних и тех же наук: физики, астрономии, химии и так далее, то есть мы знаем то же, что знают и они. Далее, в целом техника у нас всех примерно одинакова — корабли враждующих сторон по своим характеристикам похожи друг на друга довольно сильно. Итого: мы равны своему противнику по знаниям и техническим возможностям. Вывод: в такой ситуации нам долго не продержаться — как бы мы не старались скрыться от погони около двойных звезд, нас рано или поздно настигнут, а раз сейчас я рассчитываю худший вариант, то значит, настигнут обязательно и притом очень быстро — нас ждет героическая смерть, но это очень слабое утешение; правда, мы выполним свой долг до конца, но хотелось бы еще и пожить.
И тут я подумал: «НАС ждет?!»
В принципе, какое мне дело до этих «нас»?
Меня, именно меня ждет смерть, а это лично для меня очень важно! Но есть ли у меня выбор? — возможно, поэтому надо надеяться на удачу, и рассуждать дальше спокойно и сосредоточенно.
Я продолжал напряженно думать дальше. Неожиданно меня заинтересовал рентгеновский пульсар, — вернее не он сам, а пучки его излучения: глупо самому попасть под излучение этого галактического исполина — хорошо бы, чтобы в поток рентгеновских лучей попал не наш корабль, а вражеский!
Нейтронная звезда вращается равномерно, и из-за чего оба ее пучка излучения образуют плоскость, в которой присутствуют рентгеновские лучи пульсара. Если путь корабля, к примеру, перпендикулярен плоскости излучения, то большую часть времени перед звездолетом будет свободное пространство, и лишь изредка перед ним будет мелькать конус рентгеновских волн, поэтому с очень высокой вероятностью корабль благополучно преодолеет плоскость излучения. (Однако, по закону подлости, наш корабль попадет под излучение, а вражеские — нет!)
Но если все же какое-нибудь тело будет постоянно находиться в плоскости излучения пульсара, то через определенное время оно обязательно попадет в пучок жесткого излучения звезды, то есть вероятность его попадания в этот пучок равняется стопроцентной; таким образом, если корабль движется в плоскости излучения, то он гибнет, а если же движется под прямым углом к этой плоскости, то, скорее всего, остается цел. Получается, что если крейсер будет проходить плоскость излучения под каким-либо углом, то тогда вероятность попасть в конус рентгеновских волн изменяется от единицы (когда корабль будет пересекать плоскость с практически нулевым углом атаки, то есть двигаться в плоскости), до минимальной (когда корабль будет пересекать эту плоскость под прямым углом).
А теперь подытоживаем: мой звездолет должен проходить плоскость излучения пульсара под минимально возможным углом, и к тому же мы должны проходить эту плоскость на максимально близком расстоянии от нейтронной звезды, таким образом мы в наибольшей степени увеличиваем вероятность столкновения космолета с плотным потоком излучения; далее, желательно двигаться именно на пульсар, а не от него для того, чтобы корабли противника, если кто-нибудь из них замешкается, попали бы в магнитное поле звезды и погибли бы там. А теперь основное: нам самим нужно не угодить в свою собственную ловушку, и для этого наши программисты должны сделать такую программу для моего крейсера, чтобы мы могли всегда безопасно проходить сквозь плоскость излучения пульсара, короче говоря, пройти по самому лезвию клинка и не оступиться. Также обязательно нужно, чтобы мы смогли это делать в автоматическом режиме, причем находясь как можно ближе к нейтронной звезде. Получить необходимые данные для расчета этой задачи несложно — противник наверняка успеет собрать их за несколько минут, однако получить данные и провести по этим данным корабль — это две совершенно разные вещи, потому что малейшее отклонение от правильного курса будет являться гибельным для звездолета, а во-первых, найти верный курс будет очень трудно, и во-вторых, не отклониться от него, летя в ручном или же полуавтоматическом режиме, будет столь же тяжело! Написать и отладить такую программу несложно, но для этого нужно иметь достаточное количество времени, а в бою на это времени не хватит, поэтому без такой программы корабль может идти только в полуавтоматическом или же в ручном режиме, то есть у экипажа корабля будет надежда на благополучный исход, и они могут молиться (притом, что если у них будет эта специальная программа, то автоматика четко сделает свое дело и обращаться за помощью к сверхъестественным силам в принципе не будет надобности!).
Стрелять вблизи пульсара основным оружием бесполезно — вращающиеся пучки его излучения собьют настройку любого несущего луча, а стрелять без него сразу же основным лучом, означит стрелять по мишени с закрытыми глазами, стоя к ней спиной, однако даже в таких условиях антиматерией вполне можно будет сражаться; но я надеюсь, что на такое близкое расстояние их не подпущу. Когда мы будем преодолевать плоскость излучения пульсара на глазах у противника в первый раз, то у него, скорее всего, пока еще не будет под руками такой же программы, как у нас, поэтому им это дорого будет стоить! Но это сработает всего лишь однажды: имея эту программу, я только на один раз получу неоспоримое преимущество перед противником (и это прекрасно, ибо знания и техника у нас одинаковые). Двойные звезды я буду использовать для отхода, а на крайний случай я оставлю рентгеновский пульсар и программу, написанную специально для него.
Однако, нужно не забывать, что самое главное, к чему надо стремиться — это не умение уходить от погони, а умение успешно атаковать планетарную систему, умение точно попасть одним-единственным выстрелом прямо в астероид — на второй выстрел времени не будет, а в случае успеха наш народ понесет меньшие потери, чем они могли бы быть, не погибни население планетарной системы противника. Необходимо попадать — а если ты не попал, то какая разница, сколько раз ты стрелял!
Мы так и сделали — наметили объекты отхода, написали и отладили программу; в то же время я тщательно проанализировал записи моих выстрелов по астероидам: меня интересовали основные свойства пространства-времени в этой ситуации — я старался нащупать принципы, по которым вероятность попадания в цель возрастает, — и кое-что мне удалось найти, но я не был уверен в том, что это было действительно то, что мне нужно, однако ничего другого я тогда найти не смог. На подготовку ушло больше недели времени, и когда все было сделано, я решил отправляться в поход.
…И мы пошли, и я стрелял, и никто из нас не знал, попали ли мы хоть раз — мы путали свои следы, и снова стреляли, и опять уходили, и бархатная ночь укрывала нас, и теплые звезды светили нам каким-то домашним светом; и был страх в наших сердцах, и боялись мы, и они боялись нас; и не было в нас милосердия, и не было в нас жестокости — мы просто не могли постигнуть в полной мере размер того, что делали, ибо цели наши были слишком далеко от нас, слишком далеко… Прыжок, выстрел, отход с запутыванием следов — и опять сначала… — и ни разу мы не увидели результата рук своих, но знали мы, что страх и смерть оставляли мы за собой на планетах, — и они ненавидели нас, весь наш экипаж, целиком, за то, что он есть, — и жаждали они нашей смерти;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80


А-П

П-Я