Достойный магазин Wodolei 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

У рыб, земноводных, пресмыкающихся и птиц ненужное, в общем-то, ядро так и остается в зрелом эритроците.У млекопитающих, а стало быть, и у людей процесс идет дальше – ядро исчезает. Такая клетка называется ретикулоцитом. У лабораторных животных, например, кроликов, специфическими ядами можно остановить процесс кроветворения на этой стадии. Тогда в костном мозге накапливаются ретикулоциты. Для биохимика эти клетки – сущий клад! В них нет ядер, но много матричных РНК, белоксинтезирующий аппарат работает и гонит лишь одни гемоглобины. Но вот будущий эритроцит насыщен гемоглобином до предела. Белоксинтезирующий аппарат редуцируется, снижает активность, а зрелый эритроцит, войдя в сосуды, начинает свою жизнь – в среднем 4-месячную.Клетки без генетической программы, без ядра (энуклеированные) можно получить искусственно. Эмбриологи давно уже научились проводить такие операции на оплодотворенных яйцеклетках некоторых животных: их сначала откручивают на центрифуге, отчего ядро как более тяжелое смещается в нижнюю часть клетки, а уж после этого при определенном навыке относительно нетрудно разделить под микроскопом яйцеклетку на часть без ядра и на часть с ядром. Результат всегда один: безъядерная часть постепенно рассасывается, из части с ядром развивается нормальный организм.Но наиболее удачный объект для подобных опытов – обитающая в теплых морях, включая Черное море, водоросль ацетабулярия. Строение ее очень характерно. Так, например, распространенная у нас ацетабулярия средиземноморская имеет вид миниатюрной – несколько миллиметров и более – поганки с плоской шляпкой на длинной ножке, шляпка у некоторых видов достигает 5 сантиметров в диаметре. И этот грибок состоит из одной клетки! Оперировать ее можно без особых ухищрений, тем более что ядро этой водоросли помещается в самой нижней части ножки, у корнеобразных выростов ризоидов, которыми водоросль прикрепляется к грунту. Хирургические операции сводятся к тому, что водоросль разрезают на куски и наблюдают за их дальнейшим «поведением».Оказалось, что если рассечь ножку, то шляпка, в конце концов, погибнет, хотя некоторое время она еще может, используя энергию солнечного света, синтезировать органику из углекислого газа и воды. А нижняя часть ножки, где находится ядро, снова обзаведется шляпкой – все, как у ящериц. Но самое любопытное дальше: когда для восстановившей себя ацетабулярии приходит время делиться, то шляпка достается лишь одной половинке, одной новой особи, другая обязана «строить» себе другую шляпку.Но и это еще не все. Разные виды ацетабулярий отличаются друг от друга главным образом строением шляпки, зонтика. У средиземноморской, например, зонтик круглый и вогнутый, а у ацетабулярии Веттштейна он рассечен на лопасти и по форме похож на цветок. Был проведен такой эксперимент: ножку без шляпки от средиземноморской ацетабулярии пересадили на ризоиды ацетабулярии Веттштейна. Получился «вегетативный гибрид». Он быстро надстроил себе шляпку, и она оказалась рассеченной на лопасти. Впрочем, удивительного тут ничего нет: ведь ядро, а значит, и генетическая программа в ней, в этой химере, были от веттштейновской водоросли.Все эти примеры о великой роли генетических программ относятся к клеточной форме организации живого. А как обстоит дело у неклеточных форм жизни, у вирусов?Открытый первым и наиболее хорошо изученный вирус табачной мозаики (ВТМ) – длинная палочка, точнее трубка, состоящая на 95 процентов из белка и 5 процентов РНК. Трубчатый белковый чехол состоит примерно из 2300 молекул белка; на внутренней его поверхности пологой спиралью расположена длинная нить РНК.В уксусной кислоте (66 процентов) ВТМ распадается на отдельные молекулы белка и РНК. Если кислоту нейтрализовать щелочью, молекулы белка снова слипаются, образуя длинные трубчатые гильзы. РНК тут не обязательна, в ее отсутствие образуются столь же длинные, а то и длиннее обычных, белковые трубки, внешне неотличимые от исходных вирусных частиц.Но заразить клетку табака они не могут. Основное свойство живого – самовоспроизведение – утеряно вместе с генетической программой.Наш анализ первой аксиомы завершим примером, который хочется назвать «История со скрепи». Вирусологов последние двадцать лет весьма интересовала загадочная болезнь овец – инфекционная чесотка, поражающая периферийные нервные окончания, развивающаяся очень медленно и в конце концов приводящая к смерти. Ее назвали скрепи ( scrape ); она очень напоминала другие болезни овец (висна, рида, мэди) и людей (амиотрофический боковой склероз). Известно уже около 15 таких болезней, так называемых медленных вирусных инфекций. Из человеческих, пожалуй, наиболее экзотична куру – «хохочущая смерть», до недавнего времени поражавшая папуасов новогнинейского племени форе. Здесь экзотичен способ заражения: согласно религиозным обычаям форе на поминках по родствевнику еще несколько лет назад обязаны были съедать его мозг. А куру, как и подавляющее большинство медленных вирусных инфекций, тяготеет к клеткам нервной системы.Парадоксальность положения заключается в том, что электронный микроскоп тут бессилен. Возбудителя скрепи или куру в него никак не удавалось разглядеть. Вирусологи оказались в положении Луи Пастера – тот мог судить, содержится ли вирус бешенства в мозговой ткани, только заразив последней подопытное животное. И самое главное, по некоторым данным частицы скрепи не содержали нуклеиновых кислот: ни ДНК, ни РНК! Это почему-то приводило в восторг антидарвинистов. Согласно их логике, если материальным субстратом наследственности может быть другое вещество, кроме нуклеиновых кислот, то это опровергает теорию эволюции Дарвина. На мой взгляд, это утверждение равносильно следующему: если стихи можно написать на чем-либо, кроме бумаги, то поэзии не существует.Оставим антидарвинистов и задумаемся: каким же образом вирус скрепи размножается, воспроизводит самого себя без генотипа?Несколько лет назад автор этой книги был в экспедиции на юге Туркмении. Мы сидели на заброшенном в песках кордоне, днем ловили змей и ящериц, а вечером, когда жара спадала, за зеленым чаем вели длинные разговоры обо всем, включая молекулярную биологию. Не миновали мы и скрепи. Как истолковать отсутствие в этом вирусе нуклеиновых кислот? Да и вирус ли это?Тогда на досуге я придумал довольно сложную схему, позволявшую скрепи размножаться на базе генотипа хозяина. В общем, получалось что-то вроде короткого замыкания генетического аппарата клетки. Эта спекуляция одним ударом объясняла и медленное развитие инфекции, и приуроченность вируса к неделящимся клеткам нервной системы. Моему коллеге она понравилась, и он даже посоветовал ее опубликовать. Я не послушался совета и правильно сделал. Финал истории прост: недавно в вирусе скрепи обнаружили нуклеиновую кислоту.Первую аксиому биологии не понадобилось защищать – она сама постояла за себя.Итак, мы сформулировали первое положение, лежащее в основе всей живой материи, только для нее характерное и общее для всех живых субъектов – от примитивнейшего вируса до человека.Однако из него естественно вытекает несколько проблем, решение которых приводит к формулировке биологической аксиомы № 2. Среди них главные:1. Достаточно ли информации, содержащейся в генотипе, для набора инструкций, потребного для построения фенотипа? Вопрос можно сформулировать и иначе: что сложнее – генотип или фенотип? Сколько информации потребуется для описания того и другого?2. Каким образом из поколения в поколение воспроизводится генетическая программа, по которой развиваются организмы?Переходим ко второй аксиоме биологии. Аксиома вторая И снова немного истории. В 1927 роду на III Всесоюзном съезде зоологов, анатомов и гистологов в Ленинграде наш блестящий биолог Николай Константинович Кольцов сделал доклад, в котором впервые была четко сформулирована вторая аксиома биологии. Принцип Кольцова до сих пор остается незыблемым, несмотря на то, что наши представления о природе наследственных молекул совершенно изменились.В начале доклада Кольцов припомнил давнее событие – Московский съезд естествоиспытателей и врачей, состоявшийся в 1893 году. Два тогдашних выступления особенно врезались в его память, тогда молодого исследователя, изучавшего анатомию лягушки.Профессор М. А. Мензбир рассказал о нашумевших идеях Августа Вейсмана, разделившего организм на наследственную плазму и сому (аналоги сегодняшних генотипа и фенотипа). Из теории Вейсмана следовало, что генотип располагается в клеточном ядре и передается от поколения в поколение яйцеклетками и спермиями.И на том же съезде химик А. А. Колли путем простейших математических выкладок, основываясь на далеко еще и во многом неверных тогдашних представлениях о природе белков, показал, что в головке спермия может уместиться очень мало белковых молекул: несколько десятков, то есть примерно столько же, что и хромосом.Странным образом никто тогда, кроме Кольцова, не сопоставил оба этих выступления. Да и сам Николай Константинович вынес свои идеи на всеобщее обсуждение только после более чем тридцатилетних размышлений, уже после того, как родилась на свет генетика Моргана и белковая химия шагнула далеко вперед.Вывод его был прост хромосома – это гигантская молекула. Впоследствии, в 1935 году он назвал хромосомы «наследственными молекулами».Согласно Кольцову в хромосоме в линейной последовательности располагаются белковые молекулы – гены. Каждый ген – цепочка аминокислотных остатков, соединенных пептидными связями.
Рис. 12. Таким представлял процесс деления хромосомы Н. К. Кольцов, гениально предугадавший необходимость для жизни матричного синтеза.
Напомним, кстати, читателям, что такое аминокислота. Этого названия заслуживает любое соединение, содержащее одновременно аминогруппу – NH 2 и радикал органических кислот – COOH . Пептидная связь возникает между этими группировками: при этом отщепляется молекула воды. Белки состоят из сотен и тысяч аминокислотных остатков, соединенных пептидными связями. Кольцов предположил, что все наследуемые свойства организмов закодированы в хромосомах порядком чередования разнообразных аминокислотных остатков.Но отсюда следовало, что заново возникать подобные молекулы не могут. Слишком мала вероятность того, что аминокислоты сами по себе, без какого-нибудь упорядочивающего фактора соберутся в нужную последовательность. А ведь она воспроизводится в каждом поколении и вероятность ошибки ничтожна. Кольцов приводил пример с цепочкой всего из 17 аминокислот, возможно существование триллиона вариантов таких цепочек, различающихся чередованием остатков! Но такая цепочка (гептакайдекапептид) гораздо проще большинства природных белков.Теперь, когда последовательность аминокислот известна для многих десятков, если не сотен, белков, можно привести еще более убедительный пример, как это делает Манфред Эйген См.: Эйген М., Винклер Р. Игра Жизни. М., Наука, 1979.

. Цитохром С не самый большой белок, в нем лишь около сотни аминокислотных остатков. Эйген подсчитал, что число вариантов такой последовательности около 10130(единица со ста тридцатью нулями). Трудно представить столь огромную величину. Если бы вся Вселенная (все планеты, звезды и галактики) состояла из цитохрома С , в ней могло уместиться только около 1074молекул! Это ли не подтверждение мысли Кольцова!И Кольцов делает следующий вывод:
«Наследственные молекулы синтезируются матричным путем. В качестве матрицы, на которой строится ген будущего поколения, используется ген предыдущего поколения».
Это и есть аксиома биологии № 2. Кольцов продолжил цепь рассуждений биологов предыдущих веков. Если Франческо Реди в XVI веке сформулировал принцип Omne vivum ex vivo (все живое из живого), опровергающий возможность самозарождения жизни, то ХIХ век добавил принципы Omnis cellula ex cellula (каждая клетка из клетки) и Omnis nucleus ex nucleus (каждое ядро из ядра). И Кольцов завершает: Omnis molecula ex molecula – каждая молекула (имеется в виду «наследственная молекула») из молекулы.Принцип матричного копирования был известен людям тысячи лет. Еще обитатели Шумера имели цилиндрические печати из твердого камня с вырезанными на них именами владельцев и различными рисунками. Прокатив такой цилиндрик по мягкой глине, древний шумер получал отчетливый оттиск рисунка и печати. На этом же приеме основана любая система точного и массового копирования сложных структур с закодированной в них информацией – будь то книгопечатание, чеканка монет или же изготовление фотооттисков с негатива. Представляется странным, что идею Кольцова о матричном синтезе генов поддержали в 20–30-е годы лишь немногие.

Рис. 13. Принцип матричного копирования был известен уже тысячи лет назад древним шумерам. Прокатив валик-печать по мягкой глине, состоятельный шумер ставил свою печать на документе. Уже тогда четыре с половиной тысячи лет назад люди додумались, что печать должна быть комплементарна отпечатку – выпуклостям соответствуют впадины, вместо нормальных клинописных знаков даны их зеркальные отображения. Но природа «изобрела» матричное копирование более чем за три миллиарда лет раньше, оно было первым завоеванием жизни и ее необходимым условием.
Но она была уже пущена в научный обиход. Ученик Н. К. Кольцова Н. В. Тимофеев-Ресовский познакомил с ней физика М. Дельбрюка. Э. Шредингер в своей книге «Что такое жизнь с точки зрения физика?» идею матричного синтеза по ошибке приписал Дельбрюку (ошибка через год была исправлена генетиком Дж. Б. С. Холдейном в рецензии на книгу Шредингера в журнале «Нейчер»).Возможно, Шредингер считал эту идею уже широко распространенной, чуть ли не общепринятой в среде биологов и сослался на последние работы в этом направлении, как это часто водится. Ошибка простительная, тем более что Н. В. Тимофеев-Ресовский и М.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22


А-П

П-Я