тритон мебель 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Но в первые годы после захвата власти Гитлером Соединенные Штаты все еще переживали последствия крупнейшего экономического кризиса, начавшегося в 1929 г.
Осенью 1933 г. Альберт Эйнштейн принял предложение работать во вновь созданном институте в Принстоне и перенес свою резиденцию из Берлина в этот маленький американский университетский городок. Французский физик Поль Ланжевен наполовину в шутку, наполовину всерьез произнес по этому поводу поистине пророческие слова: «Это важное событие.
Важное настолько, как если бы Ватикан был перемещен из Рима в Новый Свет. Папа современной физики переехал в Соединенные Штаты, которые теперь сделались центром физических наук».
Глава 4
Неожиданное открытие (1932-1939)
В начале 30-х годов, в то самое время, когда политика столь грубо и жестоко вторглась в тихий мир лабораторий, ядерная наука, в свою очередь, тоже постучалась в дверь политики: в 1932 г. Джемс Чэдвик открыл нейтрон - ключ к расщеплению атома.
Но стук этот был весьма деликатным. Вряд ли кто-нибудь услышал его.
Фриц Хоутерманс в 1932 г. в документе, адресованном Технической академии в Берлине, утверждал, что эта мельчайшая, только что открытая в Кембридже частица может оказаться отличным средством высвобождения могучих сил, дремлющих в материи. Однако его слова не привлекли серьезного внимания.

Тремя годами позже Фредерик Жолио-Кюри вместе со своей женой Ирен прибыли в Стокгольм для получения Нобелевской премии за открытие ими явления искусственной радиоактивности. Там он сказал: «Мы отдаем себе отчет в том, что ученые, которые могут создавать и разрушать элементы, способны также осуществлять ядерные реакции взрывного характера… Если удастся осуществить такие реакции в материи, то, по всей вероятности, будет высвобождена в огромных количествах полезная энергия». Но даже пророческие слова Жолио-Кюри вызвали не больше чем мимолетный интерес, и только лишь один исследователь сделал почти немедленно политические выводы из перспектив, возникших в связи с открытием нейтрона.

Венгерский физик Лео Сциллард (родившийся за два года до смены столетия) еще в молодости пострадал от политических треволнений. Не прошло и года его учебы в Технической академии, как он был призван на военную службу. Война складывалась неудачно для держав Тройственного Союза, но императорские и королевские офицеры все еще продолжали муштровать рекрутов так же сурово, как и в годы больших императорских смотров. Это навсегда внушило Сцилларду глубокое отвращение ко всему военному. Перипетии гражданской войны в Венгрии заставили Сцилларда, пытавшегося после демобилизации продолжать свое образование в Будапеште, перебраться в Берлин. Здесь он поступил в Техническую академию в Шарлоттенбурге, а на следующий год перевелся в университет. В то время в германской столице работали и преподавали Эйнштейн, Нернст, фон Лауэ и Планк. Под их влиянием Сциллард, намеревавшийся сначала стать подобно своему отцу гражданским инженером, отдал все же предпочтение теоретической физике. Живой, с богатым воображением молодой ученый вскоре начал работать в избранной им области деятельности сначала как ассистент у фон Лауэ, а затем как внештатный лектор в Институте кайзера Вильгельма.
Когда Гитлер пришел к власти, Сциллард вначале уехал в Вену. Пробыв в Вене шесть недель, он перебрался в Англию. Сциллард обладал удивительной способностью, опираясь на факты сегодняшнего дня, методом дедукции предугадывать будущие события. Он понимал, что рано или поздно Австрия будет захвачена нацистами.
Осенью 1933 г. на годичном собрании Британской ассоциации лорд Розерфорд произнес речь, в которой заметил, что люди, толкующие о получении атомной энергии в больших масштабах, «говорят вздор». «Его слова заставили меня задуматься над этой проблемой,- вспоминает Сциллард,- и в октябре 1933 г. мне пришла в голову мысль, что цепная реакция могла бы стать реальностью, если бы удалось найти элемент, который, поглощая один нейтрон, эмитировал бы два других. Сначала мне казалось, что таким элементом может быть бериллий, затем - некоторые другие элементы, включая и уран. Но по тем или иным причинам критический эксперимент так и не был мной осуществлен».
Будучи ученым-реалистом, он старался предвидеть последствия, старался угадать вероятную реакцию политиков, крупных промышленников и военных, если в один прекрасный день действительно удастся получить атомную энергию. Однако до сих пор еще никто не сумел проникнуть сквозь несокрушимую оболочку атома и использовать для практических целей дремлющую в нем энергию. Но уже многие исследователи работали над этой проблемой и ее решение казалось не таким уж далеким и, поскольку такая возможность уже «носилась в воздухе», то обычное безразличие правительств, несомненно, должно было смениться их острым интересом.
Подобные соображения заставили Сцилларда уже в 1935 г. обратиться ко многим ученым-атомникам с вопросом, не считают ли они благоразумным воздержаться, по крайней мере временно, от опубликования результатов их работ, имея в виду серьезные и, возможно, даже опасные последствия их исследований. Большинство из тех, к кому он обращался, отвергли его предложение. В конце концов, казалось, не было шансов на то, чтобы крепость атома была когда-нибудь взята.
Сциллард же вел разговоры уже о том, как поступить с трофеем. Из-за этой «преждевременной тревоги» он приобрел репутацию человека, постоянно думающего о третьем и четвертом шагах до того, как будут сделаны первый и второй.
Однако некоторых других ученых беспокоили такие же тревожные мысли.
Поль Ланжевен, так много сделавший в те годы для беженцев из «Третьего рейха», был серьезно обеспокоен и пытался в несколько своеобразной манере утешить бежавшего из Германии студента-историка: «Вы воспринимаете все это слишком серьезно»,- говорил он.- «Гитлер? Не так уже много осталось до того момента, когда он подобно всем тиранам сломает себе шею. Я значительно больше беспокоюсь кой о чем другом. Это нечто такое, что может причинить миру гораздо больший ущерб, чем этот бесноватый, который рано или поздно отправится ко всем чертям. Это вещь, от которой нам теперь уже не отделаться: я имею в виду нейтрон».
Молодому историку до сих пор приходилось только случайно слышать о нейтроне и он вряд ли мог поэтому заподозрить в нем что-либо опасное. Он, так же как и большинство его друзей, не осознавал того, что великие научные открытия могут гораздо сильнее влиять на ход истории, чем могущественные диктаторы.
В те времена, четверть века назад, недооценка политики людьми науки превышалась только недооценкой значения науки, наблюдавшейся среди политиков и широкой публики. Если сравнить статистически, сколько раз в те дни произносилось имя «Гитлер» и сколько раз слово «нейтрон», то отношение миллион к одному, возможно, окажется даже слишком заниженным. Настолько мало мы сами, даже в наш «век информации», можем судить о том, какие современные нам события окажутся в итоге важными и уже сегодня являются предзнаменованием будущего.
Только лишь с конца 1945 г., когда весь мир осознал значение открытия атомной энергии, стало очевидным, что расщепление атома следует рассматривать как поворотный пункт в мировой истории.
Как знаменательно необычайное совпадение, что в один и тот же год был открыт нейтрон (февраль 1932 г.), был избран президент США Рузвельт (ноябрь 1932 г.) и Гитлер возглавил германское правительство (январь 1933 г.).
Прошло семь роковых лет, прежде чем физики осознали значение нейтрона во всей его полноте, семь лет, в течение которых атомы были уже расщеплены с помощью нейтронов в Париже, Кембридже, Риме, Цюрихе и Берлине. Но истинного значения этого факта никто еще не понимал, в том числе и сами ученые. С 1932 г. до конца 1938 г. они просто отказывались верить тому, что показывали их приборы, а поэтому не удивительно, что и государственные люди, к счастью, еще не догадывались о возможностях необычайно мощного оружия, уже появившегося в сфере их деятельности. Интересно, каковы были бы последствия, если бы цепную реакцию в уране правильно истолковали в Риме в 1934 г., когда ее удалось там осуществить? Не оказались бы Муссолини и Гитлер первыми в разработке атомной бомбы? Началась бы гонка атомного вооружения до второй мировой войны? Велась бы эта война с применением атомного оружия с обеих сторон?
Физик Эмилио Сегре принимал участие в этих успешных, но неправильно истолкованных экспериментах в столице Италии. Через 20 лет, на похоронах своего учителя Энрико Ферми, он сказал: «Бог по его собственным непостижимым мотивам сделал в то время всех нас слепыми в отношении явления расщепления ядра».
Открытие нейтрона произошло именно в Кембридже в резерфордовской лаборатории далеко не случайно. В 1931 г. в Цюрихе на Конгрессе физиков немцы Бете и Бекер заявили, что они, бомбардируя бериллий альфа-частицами, наблюдали весьма сильное излучение, которое, однако, не удалось объяснить. Это заявление вызвало сенсацию.
Исследователи всех стран немедленно попытались повторить эксперимент и выявить природу замеченного излучения. Жолио-Кюри и его жена в известной мере решили загадку. Не позже чем через месяц после опубликования их первых результатов Чэдвик, работавший почти непрерывно над этой же проблемой (и подбадриваемый Резерфордом), объявил, что в загадочном явлении участвуют нейтроны. Их существование было предсказано Резерфордом еще 17 лет назад.
Своим успехом Чэдвик в значительной мере был обязан превосходной измерительной аппаратуре и, в частности, новому усилителю, который тогда только что был изобретен. В 1932 г. в мире не было ни одного физического исследовательского учреждения, которое обладало бы столь блестящей аппаратурой, как лаборатория Кавендиша в Кембридже.
В области атомных исследований огромное значение имеет измерительная аппаратура. Только с ее помощью невидимые глазом предметы исследований становятся ощутимыми и измеримыми. Эти приборы, без применения которых практически невозможно вмешательство человека в мир частиц наимельчайших размеров, к концу первой мировой войны все еще оставались чрезвычайно примитивными. Исследователи по старой привычке «стряпали» их из проволоки, воска и стеклянных сосудов, которые они сами выдували. Однако, чем глубже они пытались проникнуть внутрь неизвестного, тем сложнее требовалось оборудование и тем труднее было его изготавливать.
В 1919 г. английский физик Эллис впервые увидел экспериментальную аппаратуру, с помощью которой Резерфорд только что осуществил первые превращения атомов. Позднее Эллис писал: «Вся аппаратура состояла из небольшого латунного ящика, а сцинтилляции наблюдались с помощью микроскопа. Помнится, я был удивлен и даже слегка шокирован тем, что аппаратура не производила более внушительного впечатления». Менее 15 лет спустя тот же Эллис, ставший за это время членом резерфордовского «товарищеского кружка» в лаборатории Кавендиша, пользовался для своих экспериментов огромными генераторами и новыми высокочувствительными измерительными приборами. Рабочие помещения для атомных исследований приобретали все большее сходство со сборочными цехами заводов, а работа ученых все чаще становилась похожей на работу инженеров. Новые приборы, естественно, были дорогостоящими. Если к концу первой мировой войны лаборатория
Кавендиша расходовала не более 550 фунтов стерлингов в год на новую аппаратуру, то в 30-х годах эта цифра превышала указанную величину в несколько раз. Это принесло с собой известное изменение во взаимоотношениях ученых-атомников с обществом. Раньше необходимые для покрытия растущих расходов лабораторий фонды обеспечивались ежегодно богатыми людьми. К их числу относились канадский торговец табаком Мак-Гилл (который, между прочим, считал курение ужасной привычкой и запрещал его в тех лабораториях, которые он финансировал), бельгийский фабрикант Эрнест Сольвэй и крупный германский промышленник Карл Стилл, прозванный «добрым ангелом геттингенских физиков». Однако их дары не могли долго оставаться достаточными, и даже капиталов Рокфеллеров, мелонов и остинов, становилось мало. Вмешательство государства оказывалось все более и более необходимым. Некоторые правительства, например британское, были уже готовы помочь. Другие проявляли меньше охоты. В тех случаях, когда общественная помощь оказывалась недостаточной, ученые-атомники все чаще и притом небезуспешно обращались за более крупными субсидиями. В те годы не было еще такого случая, чтобы их новый патрон, государство, сказал бы в один прекрасный день: «Кто платит музыканту, тот и заказывает музыку».
Так как в то время лаборатория Кавендиша была значительно богаче оборудована в техническом отношении по сравнению с другими экспериментальными институтами мира, то неудивительно, что физики-атомники ожидали, что вслед за открытием нейтрона именно из этой лаборатории поступят новые важные сообщения о свойствах этой ядерной частицы.
Их ожидания были тем более оправданы, что Резерфорду удалось подобрать исключительный коллектив сотрудников. Там работал несколько меланхоличный Астон, построивший в 1919 г. образец масс-спектрографа, с помощью которого он первым измерил массы некоторых изотопов. Был там и японец Шимицу, чья новая «туманная камера» автоматически фотографировала следы атомов. Выделялся Блэкетт - самый искусный картограф этого вновь завоеванного «царства». Через его руки прошли 440000 следов атомов на фотографиях туманной камеры.
Не забудутся ни темпераментный австралиец Маркус Олифант, ни непревзойденный специалист по новейшей электрической аппаратуре Джон Кокрофт, ни Норман Фезер, прославившийся, в частности, своим почти сверхчеловеческим терпением. Эти люди работали в своего рода подсекции, руководимой русским физиком Петром Капицей, который в 1921 г. приехал к Резерфорду в Кембридж.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


А-П

П-Я