https://wodolei.ru/catalog/smesiteli/dlya_vanny/napolnie/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Хотя Танияма умер более тридцати лет назад, его коллега — Горо Шимура — стал свидетелем доказательства гипотезы Таниямы-Шимуры. Когда его спросили о его впечатлении от доказательства, он мягко улыбнулся и сдержанно, с достоинством ответил: «Я же говорил вам».
Подобно многим своим коллегам, Кен Рибет считал, что доказательство гипотезы Таниямы-Шимуры совершило переворот в математике: «Важным психологическим отзвуком доказательства гипотезы Таниямы-Шимуры явилось то, что теперь математики стали смело браться за решение проблем, которые прежде казались им неприступными. Ныне картина полностью изменилась. Теперь известно, что все эллиптические кривые модулярны, и, когда вы доказываете какую-нибудь теорему для эллиптических кривых, вы тем самым доказываете теорему относительно модулярных форм, и наоборот. У вас появляется иное видение происходящего в математике, и мысль о том, что вам придется работать с модулярными формами пугает вас меньше, поскольку вы, по существу, работаете с эллиптическими кривыми. Когда прежде приходилось писать статью об эллиптических кривых, мы вместо того, чтобы открыто признать, что нам ничего не известно, делали предположение: "Пусть гипотеза Таниямы-Шимуры доказана", — и смотрели, какие следствия проистекают из этого. Теперь нам достоверно известно, что гипотеза Таниямы-Шимуры верна, и мы смело можем утверждать, что из этого следует. Нужно ли говорить, что это гораздо приятнее».
С помощью гипотезы Таниямы-Шимуры Уайлс объединил эллиптический и модулярный миры и, тем самым, проложил математике пути ко многим другим доказательствам: проблемы, стоящие в одной области, могут быть решены по аналогии с проблемами из параллельной области. Классические нерешенные проблемы теории эллиптических кривых стало возможным подвергнуть пересмотру, используя все имеющиеся средства и методы теории модулярных форм.
Что еще более важно, Уайлс сделал первый шаг к осуществлению грандиозной программы математики Роберта Ленглендса. После успеха, достигнутого Уайлсом, стало возможно с новыми силами пытаться доказать другие гипотезы, объединяющие различные разделы математики. В марте 1996 года Уайлс разделил с Ленглендсом премию Вольфа (не путать с премией Вольфскеля) размером в 100 000 долларов. Комитет по присуждению премии Вольфа признал, что доказательство Уайлса само по себе представляет собой выдающееся достижение, к тому же оно вдохнуло жизнь в амбициозную схему Ленглендса. Уайлс совершил прорыв, который может привести математику в новый золотой век.
После года сумятицы и неопределенности математическое сообщество могло, наконец, успокоиться. На каждом симпозиуме, коллоквиуме, на любой конференции одно заседание посвящалось доказательству Уайлса, а бостонские математики даже устроили соревнование: кто из них сумеет запечатлеть памятное событие, каким, несомненно, стало доказательство Уайлса, в шутливом стихотворении. Всеобщее внимание привлекли следующие вирши-лимерик:
— Гарсон, книгу жалоб прошу я давно:
Несвежая скатерть, прокисло вино.
— Что книга! Ее я могу Вам подать,
Но узки поля, и нельзя записать,
Как Вы ни старайтесь, на них ничего.
Э.Хоув, Х.Ленстра, Д.Моултон.
Великие нерешенные проблемы
Уайлс сознавал, что, дав математике одно из величайших доказательств, он лишил ее одной из величайших загадок: «Люди говорили мне, что я отнял у них проблему, и просили дать им взамен что-нибудь еще. Математики впали в меланхолию. Мы утратили нечто такое, что было с нами на протяжении долгого времени и что многих из нас привлекло к математике. С математическими проблемами всегда так. Нам всегда необходимо находить новые проблемы, которые привлекли бы наше внимание».
Но хотя Уайлс действительно разгадал самую знаменитую математическую проблему, любителям трудных задач-головоломок не стоит терять надежду. Нерешенных проблем еще осталось превеликое множество. Многие из них, как и Великая теорема Ферма, уходят корнями в древнегреческую математику, понять их может любой школьник. Например, множество загадок и поныне связано с простыми числами. В главе 1 мы уже упоминали о том, что совершенным называется число, сумма делителей которого совпадает с самим числом. Например, 6 и 28 — совершенные числа, так как
1, 2, 3 делят 6, и 6 = 1 + 2 + 3,
1, 2, 4, 7, 14 делят 28, и 28 = 1 + 2 + 4 + 7 + 14.
Рене Декарт говорил, что «совершенные числа, подобно совершенным людям, встречаются весьма редко». Самое большое из известных совершенных чисел содержит в своей десятичной записи 130000 цифр и определяется по формуле
2216090·(2216091 — 1) .
Общее свойство всех известных совершенных чисел заключается в том, что они четны. Поэтому так и подмывает сказать, что все совершенные числа четны. Проблема, увы, пока не поддающаяся решению, заключается в том, чтобы доказать это утверждение.
Другая сложная проблема, связанная с совершенными числами, состоит в выяснении ответа на вопрос, можно ли исчерпать запас совершенных чисел за конечное число шагов. На протяжении веков многие математики, занимающиеся теорией чисел, пытались выяснить, конечно или бесконечно множество совершенных чисел, но всякий раз терпели неудачу. Всякому, кому удалось бы дать определенный ответ на этот вопрос, уготовано почетное место в истории математики.
Еще одна область богата древнейшими нерешенными проблемами — теория простых чисел. Последовательность простых чисел подчиняется какой-то плохо различимой закономерности, и простые числа живут по собственным правилам. Их сравнивают с сорной травой, случайным образом распределенной среди натуральных чисел. Перебирая одно за другим натуральные числа, можно набрести на области, богатые простыми числами, но, по неизвестной причине, другие области оказываются совершенно пустыми. Математики веками пытались разгадать закон, по которому распределены простые числа, и всякий раз терпели поражение. Возможно, никакого закона не существует, и распределение простых чисел случайно по самой своей природе. В этом случае математикам можно было бы порекомендовать заняться решением менее амбициозных проблем, связанных с простыми числами.
Например, две тысячи лет назад Евклид доказал, что запас простых чисел неисчерпаем (см. гл. 2). Последние два столетия математики пытались доказать, что запас простых чисел-близнецов также неисчерпаем. Близнецами называют пары простых чисел, отличающихся на 2, т. е. являющихся ближайшими соседними простыми числами (простые числа не могут отличаться на 1, иначе одно из них должно было бы быть четным). Примерами небольших простых чисел-близнецов могут служить (5, 7), (11, 13) и (17, 19), примерами больших чисел-близнецов — (22271, 22273) и (1 000 000 000 061, 1 000 000 000 063). Существуют веские основания полагать, что множество простых чисел-близнецов бесконечно, но никому пока не удалось доказать, что это действительно так.
Самый большой прорыв к доказательству так называемой гипотезы простых чисел произошел в 1966 году, когда китайскому математику Чену Джинграну удалось показать, что существует бесконечное множество пар простых и почти простых чисел. У настоящих простых чисел нет делителей (отличных от самого числа и единицы), а почти простые числа уступают простым самую малость: у них существуют только два простых делителя. Например, число 17 простое, а число 21 (=3·7) — почти простое. Что же касается таких чисел, как 120 (=2·3·4·5), то они не простые и не почти простые, так как их можно представить в виде произведения нескольких простых множителей. Чен доказал, что существует бесконечно много случаев, когда простое число имеет в качестве близнеца либо другое простое число, либо почти простое число. Тот, кому удастся продвинуться еще на один шаг и снять оговорку «почти», совершит величайший прорыв в теории простых чисел со времен Евклида.
Еще одна загадка простых чисел восходит к 1742 году, когда Христиан Гольдбах, учитель малолетнего царя Петра I, написал письмо великому математику Леонарду Эйлеру (который был родом из Швейцарии, но почти всю жизнь проработал в Петербурге). Рассмотрев десятки четных чисел, Гольдбах заметил, что все они представимы в виде суммы двух простых чисел:
4 = 2 + 2,
6 = 3 + 3,
8 = 3 + 5,
10 = 5 + 5,
50 = 19 + 31,
100 = 47 + 53,
21000 = 17 + 20983,
. . . . . .
Гольдбах спрашивал у Эйлера, может ли тот доказать, что каждое четное число представимо в виде суммы двух простых чисел. Несмотря на многолетние усилия, Эйлеру, которого считали «живым воплощением анализа», так и не удалось решить проблему Гольдбаха. Ныне, в век компьютеров, гипотезу Гольдбаха подвергли проверке. Оказалось, что она верна для любого четного числа до 100 000 000, но доказать, что она верна для любого из бесконечно многих четных чисел, пока никому не удалось. Математики сумели доказать, что любое четное число представимо в виде суммы не более, чем 800 000 простых чисел, но этот результат весьма далек от доказательства первоначальной гипотезы Гольдбаха. Но даже столь слабые результаты позволили пролить свет на природу простых чисел, и в 1941 году российскому математику Ивану Матвеевичу Виноградову, которому удалось продвинуться на пути к доказательству гипотезы Гольдбаха, была присуждена Сталинская премия в размере 100 000 рублей.
Из всех проблем, способных с большей или меньшей вероятностью занять место Великой теоремы Ферма, наибольшие шансы имеет проблема плотнейшей упаковки шаров Кеплера. В 1609 году немецкий ученый Иоганн Кеплер доказал, что планеты движутся не по круговым, а по эллиптическим орбитам. Это открытие совершило переворот в астрономии и позднее помогло Исааку Ньютону найти закон всемирного тяготения. Математическое наследие Кеплера не столь грандиозно по своим масштабам, как наследие Ньютона, но не менее глубоко. Проблему плотнейшей упаковки шаров можно сформулировать как задачу о том, как наиболее экономно сложить из апельсинов пирамиду.
Проблема родилась в 1611 году, когда Кеплер написал небольшое сочинение «О шестиугольных снежинках», предназначенное в дар его покровителю Иоганну Вакгеру фон Вакенфельсу. В этом сочинении Кеплер успешно объяснил, почему снежинки всегда имеют шестиугольную форму, высказав предположение, что рост каждой снежинки начинается с обладающего гексагональной симметрией зародыша, который, падая в атмосфере, увеличивается в размерах. Непрерывно изменяющиеся ветер, температура и влажность позволяют каждой снежинке сохранять индивидуальность, а малые размеры зародыша приводят к тому, что условия, от которых зависит его рост, остаются одинаковыми со всех шести сторон, тем самым способствуя сохранению симметрии. В этом, на первый взгляд легкомысленном, сочинении проявился присущий Кеплеру замечательный талант извлекать глубокие и далеко идущие результаты из простейших наблюдений. Впоследствии Кеплер стал одним из основоположников кристаллографии.
Интерес Кеплера к расположению и самоорганизации частиц вещества привел его к обсуждению другого вопроса — о плотнейшей упаковке частиц, при которой они занимают наименьший объем. Если предположить, что частицы имеют форму шаров, то ясно, что как бы они ни располагались в пространстве, между ними неизбежно останутся зазоры, и вопрос состоит в том, чтобы объем зазоров свести к минимуму. Кеплер рассмотрел несколько различных вариантов расположения шаров и для каждого варианта вычислил коэффициент заполнения пространства.
Один из первых вариантов расположения шаров, рассмотренных Кеплером, сейчас принято называть гранецентрированной кубической решеткой. Ее можно построить, выложив сначала нижний слой шаров так, чтобы каждый шар был окружен шестью другими шарами. Второй слой образуют шары, уложенные в «ямки» поверх первого слоя, как показано на рис. 24. По существу, второй слой повторяет первый, но только слегка смещен относительно первого, чтобы шары второго слоя расположились в ямках первого слоя. Именно так обычно укладывают апельсины торговцы фруктами. Коэффициент заполнения пространства такой укладки составляет 74 %. Это означает, что при укладке апельсинов в картонный ящик гранецентрированная стратегия позволяет заполнить 74 % объема ящика апельсинами.



Рис. 24. В гранецентрированной кубической упаковке шаров каждый слой состоит из сфер уложенных так, что каждая из них окружены шестью другими сферами. Поверх каждого слоя горизонтально накладывается следующий слой так, что любой из его шаров располагается не на шаре из предыдущего слоя, а в ямке. Частной разновидностью гранецентрированной кубической упаковки служат пирамиды из апельсинов в витринах овощных магазинов
Гранецентрированную кубическую решетку можно сравнить с другими вариантами упаковки, например, с простой кубической решеткой. В этом случае каждый слой состоит из шаров, расположенных в виде квадратной решетки, а каждый следующий слой расположен в точности поверх предыдущего, как показано на рис. 25. Простая кубическая решетка имеет коэффициент заполнения пространства 53 %.


Рис. 25. В простой кубической упаковке каждый слой состоит из шаров расположенных в виде квадратной решетки. Поверх каждого слоя горизонтально накладывается следующий слой так, что каждый его шар располагается строго над шаром предыдущего слоя
Еще один вариант расположения шаров — гексагональная решетка — аналогичен гранецентрированной кубической решетке, поскольку каждый слой состоит из шаров, окруженных шестью другими шарами, но следующий слой не сдвинут относительно предыдущего, а расположен прямо поверх него так, что каждый шар опирается на самую верхнюю точку шара, расположенного под ним, как показано на рис. 26. У гексагональной решетки коэффициент заполнения пространства составляет всего лишь 60 %.

Рис. 26. В упаковке с гексагональной решеткой каждый слой состоит из шаров расположенных так, что каждый из них окружен шестью другими шарами. Поверх каждого слоя горизонтально накладывается следующий слой так, что каждый шар верхнего слоя располагается непосредственно над шаром предыдущего слоя
Кеплер исследовал множество различных конфигураций и пришел к заключению, что в сочинение «О шестиугольных снежинках» стоит включить только одну, а именно ту, которая в последствие получила название гранецентрированной кубической решетки, ибо у нее «упаковка оказывается плотнейшей из возможных».
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


А-П

П-Я