https://wodolei.ru/brands/Jika/olymp/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

В этом случае удается свести к минимуму прогибы всей монтировки и при том же весе добиться большей жесткости (рис. 52, б).
Если подкову снабдить консолями, чтобы нижняя часть трубы свободно проходила, не задевая плоскости подковы, то подкову можно заменить сплошной шайбой, как это сделано у 2,6-метровнх телескопов Крымской астрофизической обсерватории и Бюраканской обсерватории. Полярной осью здесь служит собственно шайба, которая в любительских монтировках, как и подкова, катается по двум роликам и фиксирована в центре короткой осью (рис. 52, в).
Если шайбу заменить на поперечную балку, называемую траверсой, и обычную полярную ось, получится монтировка, называемая вилочной (рис. 52, г). Это, пожалуй, наиболее распространенная у профессиональных телескопов монтировка. Обычно к числу ее достоинств причисляется отсутствие противовеса. Это действительно преимущество, если длина труби не слишком велика. В противном случае консоли вилки становятся слишком длинными и нежесткими, а если мы нагрузим нижний конец труби, чтобы приблизить центр масс трубы к ее нижнему концу и тем самим
укоротить консоли, то мы лишим монтировку ее главного преимущества: она становится тяжелой.
Многообразие монтировок для телескопов не исчерпывается описанными. Существует довольно много монтировок специального назначения, а также разновидностей описанных. Однако на этом, пожалуй, нужно остановиться и перейти к конструктивным решениям отдельных узлов механики телескопа.
45. КОНСТРУКЦИЯ ОПРАВЫ ГЛАВНОГО ЗЕРКАЛА
Если зеркало с оправой установлено внутри трубы, то оно достаточно защищено. Поэтому оправа может быть довольно простой и легкой (рис. 53). Она состоит из опорной пластины 3, которая в трех точках крепится к трубе с помощью уголков 4. Эта пластина несет
Рис. 53. Конструкция оправы зеркала.
1--зеркало, 2--пластина-оправа зеркала, 3--опорная пластина, 4--уголок, 5--винты, 6 -- резиновая трубка, 7--гайка, 8--барашек, 9 -- возвратная пружина, 10 -- кружки из фетра, картона и т. п.
на себе другую пластину 2, которая служит собственно оправой зеркала. Зеркало 1 удерживается тремя винтами 5 диаметром 6--8 мм. Для того чтобы при резком охлаждении ночью зеркало не оказалось зажатым этими винтами, между ними и зеркалом надо оставить зазор около 0,5 мм. Еще лучше на эти винты надеть резиновые или пластмассовые трубки 6. Эти трубки будут компенсировать различие в температурных деформациях стекла и металла оправы. В этом случае зазора между трубками и зеркалом можно не оставлять, однако надо проследить, чтобы зеркало не оказалось зажатым.
Зеркало опирается на три "точки". Эти "точки" в действительности представляют собой три кружка из фетра, толстой кожи, войлока, толстого картона 10. Диаметры этих кружков должны составлять 1/8--1/10 диаметра зеркала. Они приклеиваются к пластине каким-нибудь синтетическим клеем, например эпоксидной смолой. Зеркало укладывается на эти кружки, и чтобы оно не выпало при случайном опрокидывании оправы, его фиксируют тремя специальными широкими гайками 7, которые навинчиваются на три винта, удерживающие зеркало. Считается, что зеркало должно немного "играть" в оправе. Для этого достаточно, чтобы между зеркалом и удерживающей его деталью был зазор около 0,2--0,3 мм.
Для точной установки зеркала относительно оси трубы и других оптических деталей оно вместе с оправой должно в небольших пределах наклоняться (юстироваться). С этой целью наша оправа и снабжена винтами 5, барашками 8 и возвратными пружинами 9, надетыми на эти винты. В опорной пластине 3 просверливаются гладкие отверстия, а в оправе 2 -- отверстия с резьбой. При навинчивании барашка угол оправы опускается, а при вывинчивании возвратная пружина поднимает его вверх. Благодаря этому механизму можно легко и с высокой точностью установить (отъюстировать) зеркало в телескопе.
Если зеркало тонкое, его надо разгрузить не на три точки, а на шесть. Это делается при помощи V-образных коромысел (рис. 54, а, б, в). Каждое плечо коромысла служит одной "точкой". Тогда зеркало кладется на все три равноудаленных коромысла, они легко устанавливаются так, что на каждое из плеч приходится совершенно одинаковая нагрузка. Это нам и надо. Важно только, чтобы от нагрузки коромысла не деформировались. Для 150-миллиметрового зеркала нужно взять сталь или латунь толщиной 1,5--2 мм или алюминий -- 3 мм. Остальные размеры можно взять с рис. 54, г. При переходе к большему зеркалу эти размеры нужно пропорционально увеличить, а толщину можно оставить той же. Жесткость коромысла увели
чим добавлением одной "тяги", как показано на рис. 54, б. Можно отлить коромысла с ребрами жесткости из алюминия, силумина и т. п. (рис. 54, в). О том, как это сделать в любительских условиях, рассказано ниже.
Большое достоинство описанных оправ состоит в том, что зеркало в них обдувается воздухом со всех
Рис. 54. Оправа с разгрузкой на шесть точек.
сторон. Это означает, что оно скорее принимает температуру окружающего воздуха при резких ее перепадах, например когда телескоп выносят на улицу.
Эти оправы применяются в подавляющем большинстве телескопов Новосибирского клуба им. Д. Д. Максутова, иногда с незначительными изменениями. Они хорошо работают в телескопах диаметром по крайней мере до 300--350 мм. Только вместо пружин в случае тяжелых зеркал применяются возвратные винты, которые установлены в отверстиях с резьбой в опорной пластине и своим верхним концом упираются в нижнюю часть оправы. Прежде чем опустить край оправы, надо ослабить этот возвратный винт, а потом притянуть оправу барашком. Для подъема края оправы надо ослабить барашек и приподнять оправу возвратным винтом. Аналогичные оправы применяются многими зарубежными фирмами в серийных любительских телескопах Ньютона диаметром до 300--320 мм.
46. ОПРАВА ДИАГОНАЛЬНОГО ЗЕРКАЛА
Диагональное зеркало или призма в системе Ньютона устанавливается внутри трубы на верхнем ее конце. В небольшом телескопе диаметром до 140--150 мм лучше всего применить стойку, вырезанную из латунной или стальной пластины толщиной 1,5--2 мм, или же алюминиевой до 3 мм. Алюминий для этих целей надо брать мягкий, чтобы он легко гнулся без изломов под углом 90є. Стойка вырезается ножницами по металлу и потом гнется, как показано на рис. 55, а. Зеркало тыльной стороной приклеивается к стойке на картонной или кожаной прокладке для компенсации различных для стекла и металла температурных деформаций. Можно его приклеить мягким клеем типа "герметик", но только в центральной части, а не по всей поверхности. В этом случае можно обойтись без прокладки.
Призма вклеивается нерабочими треугольными матовыми плоскостями. Нужно следить, чтобы клей не попадал на рабочие, отполированные грани призмы. Особенно опасен канцелярский клей, после которого на поверхности полированного стекла остаются матовые неудаляемые пятна. Вообще же канцелярский клей хорошо склеивает металл со стеклом, бумагой и стекло с бумагой. Правда, через 3--4 месяца клей разрушается. Поэтому его можно применять для временных соединений. Между призмой и стойкой должны быть прокладки из бумаги или тонкого картона толщиной 0,5--1 мм.
Юстируется такая оправа изгибанием стойки, если надо зеркало сместить к оптической оси главного зеркала, перемещением вдоль оси в продолговатых отверстиях для винтов, кренящих стойку к стенке трубы, подкладыванием шайб между стенкой трубы и основанием стойки для наклона, подъема или опускания зеркала. Оправа со стойкой зарекомендовала себя
очень хорошо, она проста в изготовлении и удобна в работе.
Для телескопов диаметром больше 200 мм лучше применить систему растяжек, так как толщина стойки
Рис 55 Оправа на стойке для 45 градусной призмы и оправа на растяжках для диагонального зеркала.
1-винт с барашками, 2 - юстировочные винты, 3 - винт с возвратной пружиной, 4 --лапки.
будет увеличиваться пропорционально квадрату ее длины. Так, для 300-миллиметрового главного зеркала толщину стойки придется увеличить с 1,5 мм до 6 мм. Рис. 55, б поясняет устройство растяжек и оправы.
Растяжки работают только на растяжение и потому могут быть тонкими. Для телескопа диаметром 200-250 мм они могут иметь толщину 0,5--0,7 мм. Их можно сделать из жести или кровельной стали. Растяжки должны быть хорошо натянуты. На концах каждой из них крепятся длинные винты-шпильки 1, которые вставляются в отверстия в трубе так, что их концы оказываются снаружи. На эти концы наворачиваются гайки, ими растяжки и натягиваются.
Конструкция оправы ясна из рисунка. Винтами с барашками 1 оправа крепится к трубе. Ее юстировка производится тремя юстировочными винтами 2 и одним винтом 3 с возвратной пружиной. Пружину можно убрать и стопорить оправу этим центральным винтом.
Зеркало крепится к срезанной под углом 45є части оправы четырьмя лапками из 1-миллиметровой латуни или стали 4, которые приворачиваются к оправе небольшими винтами.
47. ОКУЛЯРНЫЙ УЗЕЛ
Среди наблюдателей, работающих с телескопом, могут оказаться не только люди с нормальным зрением, но и близорукие и дальнозоркие. Для близорукого глаза окуляр приходится несколько приблизить к зеркалу, для дальнозоркого -отодвинуть. Величину, на которую надо переместить окуляр, можно определить по формуле
где Д--число диоптрий близорукого или дальнозоркого глаза (для близорукого эта величина берется со знаком "минус", для дальнозоркого--со знаком "плюс"), ф -- фокусное расстояние окуляра в миллиметрах. Например, близорукость наблюдателя --3 диоптрии, фокусное расстояние окуляра 40 мм. Перемещение окуляра составит
Чем больше близорукость (или дальнозоркость) наблюдателя, тем больше придется передвигать окуляр. Наоборот, чем меньше фокусное расстояние окуляра, тем
меньше надо его передвигать при той же близорукости. По приведенной формуле читатель без труда определит, насколько ему придется передвигать окуляр, а значат, и сможет вычислить необходимую длину окулярной трубки.
Есть еще несколько причин, по которым приходится передвигать окуляр, добиваясь наилучшей фокусировки. При изменениях температуры воздуха из-за температурных деформаций зеркала его радиус кривизны и фокусное расстояние изменяются, поэтому требуется некоторая перефокусировка окуляра. Перефокусировка требуется и при смене окуляров из-за небольших ошибок в размерах их оправ. При наблюдении земных предметов, когда расстояние до предмета не равно "бесконечности", приходится слегка выдвигать окуляр; этот эффект уже хорошо заметен при фокусном расстоянии зеркала 1000 мм и расстоянии до объекта менее 1,5--2 км.
Исходя из этих предпосылок, выберем простейшую конструкцию фокусировочного устройства (рис. 56, а). Оно состоит из двух трубок: неподвижной 1, которая крепится непосредственно к трубе телескопа, и подвижной 2, которая с трением, но плавно перемещается в первой. Трубки эти можно подобрать, выточить или склеить из ватмана эпоксидной смолой. Этот материал по свойствам напоминает пластмассу. Трубки склеиваются на болванках подходящих диаметров. Толщина стенок 1,5--2 мм.
Большую по диаметру трубку вклеивают в круглое отверстие в стенке трубы телескопа, которое сначала высверливается по окружности дрелью, а потом обрабатывается полукруглым напильником. Чтобы склейка была прочной, смочим в эпоксидной смоле жгутик из ваты, следя за тем, чтобы вата полностью пропиталась смолой, и проконопатим этим жгутиком место склейки, чтобы образовался плотный шов. После затвердевания смолы обрабатываем шов напильником.
Вставим меньшую трубку в первую и станем, слегка поворачивая ее, вдвигать или выдвигать. Чтобы трубка не проваливалась в неподвижную, на краю подвижной надо сделать бортик. В случае бумажно-клеевой трубки это может быть несколько слоев бумажной полоски, наклеенной на край трубки. Окуляр вставляется в подвижную трубку также на трении.
Можно несколько усовершенствовать это устройство, если на наружной трубке просверлить серию одинаковых отверстий вдоль спиральной линии, а потом распилить их надфилем, чтобы получился криволинейный направляющий паз одинаковой ширины. В под
вижной трубке сверлится отверстие и нарезается метчиком резьба для винта М4--М6. Вставив винт в направляющую щель, ввернем его в отверстие с резьбой в подвижной трубке. Ведя за винт 3, можно с удобством перемещать подвижную трубку. Вместо стандартного винта лучше сделать специальный поводок. Для
этого на стержне подходящего диаметра нарезаем леркой резьбу на длину чуть больше толщины стенки подвижной трубки. Остальную часть стержня оставляем гладкой.
Если вы имеете доступ к токарно-винторезному станку, можно и подвижную трубку снабдить резьбой с шагом около 2 мм (Рис. 56, б). Резьбу лучше сделать однозаходную: так и проще и удобнее. В этом случае неподвижная трубка должна быть снабжена фланцем 5, с помощью которого она крепится к трубе телескопа. Подвижная трубка снабжается валиком с накаткой 4. Для того чтобы окуляр надежно держался на своем месте, надо на конце подвижной трубки сделать пропилы, как показано на рис. 56, а, в, и несколько подогнуть внутрь образовавшиеся концы.
Будет хорошо, если удастся достать старое фокусировочное устройство микроскопа с кремальерой: специальной зубчатой гребенкой, по которой катится зубчатое колесо с тем же шагом зубьев *). На валу этого колеса установлена ручка -- штурвальчик, которую наблюдатель вращает. Зубчатое колесо толкает гребенку, а та в свою очередь заставляет подвижную трубку с окуляром передвигаться вдоль оси. 37).
Если у вас есть доступ к фрезерному станку, можно гребенку нарезать прямо на подвижной трубке. Для этого, выточив и тщательно подогнав подвижную трубку к неподвижной, устанавливаем подвижную трубку в тисках фрезерного станка перпендикулярно к дисковой фасонной зуборезной фрезе и начинаем последовательно нарезать зуб за зубом, перемещая каретку с тисками вдоль оси трубки каждый раз на величину шага, который надо предварительно замерить на специально подобранной широкой шестеренке, которая будет служить в окончательно собранном узле.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27


А-П

П-Я