https://wodolei.ru/catalog/dushevie_kabini/China/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

За выдающиеся заслуги перед Родиной Г.М. Кржижановский награжден многими орденами и медалями. В 1957 году ему присвоено звание Героя Социалистического Труда. 31 марта 1959 года академик Г.М. Кржижановский скончался в возрасте 87 лет.
Вы помните большой завод динамо-машин за Московской заставой, принадлежащий акционерному обществу «Сименс и Шуккерт»? Декретом Совета Народных Комиссаров от 28 июня 1918 года он был национализирован. И в том же году для налаживания производства Петроградский Совет направил на него первых специалистов, выразивших желание сотрудничать с Советской властью. Постепенно стали оживать его цехи.
7 ноября 1922 года Совет рабочих депутатов Петрограда постановил назвать завод динамо-машин Петроградским заводом «Электросила». В цехи пришли молодые инженеры Р.А. Лютер, А.Е. Алексеев, Д.В.Ефремов, И.А. Одинг, А.В. Трамбицкий, М.П. Костенко и другие. Позже многие из них стали выдающимися специалистами советского электромашиностроения.
Сразу пришлось решать сложные инженерные задачи — проектировать и налаживать производство первых крупных машин для Волховской ГЭС, а потом для Земо-Авчальской и Кадырьинской ГЭС. Но для этого следовало создать расчетно-конструкторскую службу и лаборатории.
B 1931 году, когда истек кратчайший срок, намеченный планом ГОЭЛРО, мощность районных электростанций в государстве на 20 процентов превышала запланированную. Успехи в выполнении ленинского плана ГОЭЛРО, а также восстановление разрушенного хозяйства страны заложили прочный фундамент первых пятилеток. На повестку дня стало развитие тяжелой индустрии, в частности металлургической и сталепрокатной промышленности. И на «Электросиле» строят электрооборудование для первых советских блюмингов Макеевского и Златоустовского заводов, для «Запорожстали». в общезаводском бюро исследований под руководством М.П. Костенко, в будущем — академика и Героя Социалистического Труда, проектируются новые мощные турбогенераторы для Днепровской и Нижне-Свирской ГЭС.
В общезаводское бюро исследований (БИС) влились электромашинная, химическая и высоковольтно-изоляционная лаборатории. Оно стало мощным научно-исследовательским подразделением, способным решать сложные и самостоятельные задачи. Но тут-то и начались организационные неувязки. Взаимоотношения между ОБИС, техническим отделом и производством осложнились. И, чтобы разрубить «гордиев узел», руководство завода приняло решение — ликвидировать отдел исследований. Электромашинную лабораторию с ее испытательными стендами расформировали и распределили но цехам. Остальные лаборатории перешли в непосредственное подчинение главного инженера завода.
Это было серьезной ошибкой. И результаты ее не замедлили сказаться на работе всего предприятия. Без специального исследовательского звена, которое обеспечивает интеграцию производства с наукой, невозможен в современных условиях прогресс ни науки, ни самого производства.
В 1938 году в связи с новыми заданиями, имеющими важное значение для индустриализации страны, было принято решение о восстановлении функций центральной электромашинной лаборатории. Более того, теперь ее собрались расширить, объединить с другими лабораториями территориально, но помешала война.
В грозные годы значительная часть оборудования, техническая документация, а также научно-инженерный персонал были эвакуированы в восточные районы страны — в Свердловск, в поселок Баранчинский. И там на совершенно новых местах благодаря опыту и самоотверженному труду электросиловцев возникли новые заводы, внесшие немалый вклад в дело победы над врагом.
Однако часть работников завода осталась в Ленинграде. В условиях блокады, непосредственной близости линии фронта, под непрерывным артобстрелом и бомбежками люди выполняли заказы фронта и даже выпускали продукцию для промышленности на востоке страны.
Однако блокада и разрушения в цехах делали свое дело. Производство крупного электрооборудования было прекращено. Это могло явиться большой помехой для будущего восстановления главных отраслей народного хозяйства. И 6 марта 1943 года Государственный Комитет Обороны принял постановление о восстановлении завода. К концу войны «Электросила» была снова в строю.
После завершения восстановительного периода перед заводом встали новые задачи. Экономическая целесообразность диктовала требование — постепенное повышение мощности турбо — и гидрогенераторов. При этом уменьшались удельная стоимость и расход материалов, дешевле становилась эксплуатация, повышалась эффективность капитальных вложений, и в результате дешевле оказывалась электроэнергия. Но на пути создания генераторов, близких к предельной мощности, немало трудностей. Без глубоких исследований и тщательных расчетов с этим справиться было невозможно. И в 1956 году при заводе «Электросила» организуется филиал Всесоюзного научно-исследовательского института электромеханики (ВНИИЭМ).
Организационно Ленинградский филиал подчинялся институту, находящемуся в Москве, что создавало значительные трудности в упорядочении научно-производственного процесса. При наличии такой мощной базы, как завод «Электросила», для слаженной работы предприятия и НИИ руководство должно было быть единым.
В 1969 году Ленинградский филиал при «Электросиле» получил название НИИ ЛЭО «Электросила», а с 1975 года — НИИ объединения «Электросила». Сейчас это научно-исследовательский, проектно-конструкторский и технологический институт Ленинградского производственного электромашиностроительного объединения «Электросила» имени С.М. Кирова. Если познакомиться с заданиями, которые ставились и ставятся перед институтом, то первое, что бросается в глаза, — усложняющиеся с каждым годом задачи. Казалось бы, совсем недавно спроектировали и построили турбогенератор небывалой мощности — 500 МВт, но потребовался новый — на 800 МВт. Справились и с этой задачей, а на пороге новая — турбогенератор мощностью 1 миллион 200 тысяч кВт. И не за горами двух-миллионник!
В 1945 году в масштабе государства выдвигается требование широкого развития атомной науки и техники. И вот из состава расчетчиков, конструкторов, технологов и исследователей все той же «Электросилы» собирается группа для разработки электрофизической аппаратуры. Возглавляет ее Д.В. Ефремов. Скоро из небольшого коллектива вырастает Научно-исследовательский институт электрофизической аппаратуры. В его стенах разработай ряд крупных ускорителей элементарных частиц и другой мощной электрофизической аппаратуры. А для воплощения замыслов и проектов пущен Ленинградский электромашиностроительный завод, являющийся дочерним предприятием «Электросилы».
Магнитогидродинамнчеокие генераторы для электростанций будущего, устройства для непосредственного преобразования электромагнитной энергии в механическую, чтобы перекачивать в печах расплавленный металл; криогенная (сверхпроводниковая) техника — буквально все самые интересные, самые новые направления научно-технического прогресса в области электромашиностроения начинают свою жизнь в лабораториях и отделах НИИ «Электросила».
В 1962 году, когда завод стал Ленинградским электромашиностроительным объединением, в его состав вошли помимо головного завода Ленинградский электромашиностроительный завод, Псковский электромашиностроительный завод, Великолукский завод «Реостат», цех в городе Дно и Ленинградский филиал ВНИИЭМ.
Сегодня в цехах объединения получают жизнь не только крупнейшие турбогидрогенераторы. Здесь собрали и испытали двигатели и генераторы для атомных ледоколов, была изготовлена очередная опытная установка — токамак для исследований в области термоядерного синтеза. Продукция ЛПЭО «Электросила» имени С.М. Кирова успешно работает сегодня более чем в 75 странах мира, в том числе и в станках типа «обрабатывающий центр», о которых с таким восторгом пишет мировая прессса.

Самое загадочное явление в физике XX века
Если посмотреть на историю энергетики как на создание череды электрогенераторов, то нетрудно заметить, что год от года мощность их растет. И это понятно; чем крупнее агрегат, тем дешевле оказывается вырабатываемая им энергия. Вот простой пример: если сравнить две одинаковые по мощности тепловые электростанции, на одной из которых стоят турбогенераторы по 100 тысяч киловатт, а на другой — по 25 тысяч киловатт, то удельная стоимость первой ТЭС окажется ниже удельной стоимости второй примерно в 2, 5 ра-а, то есть дешевле будет установленный киловатт. А ведь при расчете не приняты во внимание ни возможность увеличения производительности заводов, изготавливающих оборудование, ни ускорение темпов строительства станций…
До каких же пор возможно такое укрупнение агрегатов? Из газетных сообщений мы знаем о пуске на новых ГРЭС блоков по миллиону киловатт. Для турбогенераторов обычного типа предел уже недалек. Специалисты считают, что поднять мощность единичной машины более 2, 5-3 миллионов киловатт не удастся. Слишком велика и громоздка окажется такая машина. Ее детали будет трудно изготавливать на заводах, еще труднее транспортировать к месту установки. А уж как вести монтаж такого гиганта на месте, и вовсе неизвестно. Но главное — при работе в роторах гигантских машин возникают такие центробежные усилия, что они разрывают «сердце» агрегата.
Значит ли это, что в энергомашиностроении мы выбрали все резервы? Вряд ли… Прежде чем перейти к обсуждению возможностей сегодняшней, а вернее, завтрашней электроэнергетики, давайте еще раз вернемся в прошлое.
Итак, на нашем календаре снова начало столетия. В физических лабораториях мира ученые с увлечением занимаются опытами по сжижению газов. Их интересует, при какой температуре газы переходят в жидкость. На первом этапе научных исследований движущей силой, как правило, является любознательность. Ученого вполне удовлетворяет уже то, что в случае удачи он испытывает чувство глубокого удовлетворения, поскольку именно ему удалось узнать первому то, что раньше было никому не известно.
Впрочем, в этой области было уже сделано немало. Физики все ближе и ближе подбирались к заветной температуре абсолютного нуля. Предполагалось, что при абсолютном нуле (-273° С) все электроны в металле, например, окажутся связанными с атомами, их движение станет невозможным, и, следовательно, металлы должны перестать пропускать через себя электрический ток. Их сопротивление должно вырасти до бесконечности. Так думали все…
Можно привести еще массу причин, заставлявших ученых заниматься получением все более и более низких температур. Достаточно сказать, что холод вообще чрезвычайно широко распространен в природе. И окружающий нас космос — это не что иное, как гигантский холодильник. А узнать, как ведет себя вещество в условиях космического и более чем космического холода, разве не интересно?
Таким образом, мы вполне можем считать, что у нидерландского физика Хейке Камерлинг-Оннеса оснований добиваться получения жидкого гелия было более чем достаточно. Надо добавить, что процедура получения жидких газов — дело довольно кропотливое и утомительное. Но Камерлинг-Оннес человек упрямый, и в результате затраченных усилий в 1908 году он первым наблюдал светлую, подвижную, чуть голубоватую жидкость, в которую после многоступенчатого охлаждения превратился гелий. Температура его кипения оказалась всего 4, 2 К. По более привычной широкому читателю шкале Цельсия это будет минус 268, 8° С.
Цель следующего опыта — измерение сопротивления какого-нибудь металла при достигнутой температуре. По идее по мере охлаждения сопротивление должно расти. Физики последовательно охлаждали металлы в жидком азоте до 63 К, потом до 20, 5 К в кипящем водороде. Умудрились охладить еще сильнее, а сопротивление образцов все никак не начинало расти. Более того, с понижением температуры оно постепенно уменьшалось.
Камерлинг-Оннес решил взять в качестве образца чистого металла ртуть. Почему именно? Видите ли, в начале века, а дело происходило в 1911 году, получать сверхчистые металлы еще не очень-то умели. Это сейчас вы можете заказать, скажем, металлургам металл с примесью не более одного атома на миллион… А тогда ртуть, пожалуй, единственная достаточно просто освобождалась "от добавок дистилляционной перегонкой и могла считаться чистой. Конечно, экспериментировать с нею нелегко. При комнатной температуре из жидкой ртути проволочку не сделаешь…
Камерлинг-Оннес налил ртуть в V-образные тру-бочки, соединил их сверху рогульками, тоже заполненными ртутью, и стал охлаждать. Вот металл замерз, и можно было начинать опыт.
Первую точку на графике он поставил при температуре жидкого воздуха. Вторую — при температуре жидкого водорода. Пока все шло как обычно, сопротивление замерзшей ртути постепенно, с падением температуры, уменьшалось. Когда же оно начнет повышаться? Может быть, жидкий гелий внесет какие-нибудь изменения? Ученый отправил образец в легкую голубовато-прозрачную жидкость и… Дальше произошло то, чего никто не ожидал и не предсказывал: сопротивление ртутного образца вдруг исчезло! Да, да, при температуре 4, 15 К оно стремительно упало до нуля. Камерлинг-Оннес обнаружил новое, не виданное и никем из его коллег до того не представляемое явление — сверхпроводимость.
Открыл и стал знаменит! Как просто, правда? Просто, когда вся работа остается за результатом, когда на поверхности — одно открытие и награда.
Сверхпроводимость оказалась самым загадочным явлением в физике XX века. Пятьдесят лет оставалась она необъясненной. За это время в науке произошли огромные перемены: появились квантовая механика и ядерная физика, ученые открыли нейтрон, анти — и другие частицы, была создана теория относительности, обнаружено красное смещение и разбегание галактик, осуществлены ядерная и термоядерная реакция, запущены искусственные спутники Земли.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37


А-П

П-Я