Недорого сайт https://Wodolei.ru 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Он сказал, как это может быть? Как может быть свет без звёзд? После чего сказал, что не в правду всё написано. Вот современные Смердяковы должны быть очень осторожны с книгой Бытия.
Потому что мы вдруг обнаруживаем, что на самом деле сначала был свет, а звёзды возникли потом. Итак, ранняя Вселенная, что она собой представляла? Это был свет, и в ранней Вселенной возникли первые элементарные частицы. Этим занимались мы - я и моя группа, начиная с середины 60-х годов. Тогда мы занимались вопросом о рождении частиц в ранней Вселенной. Гравитационное поле ранней Вселенной было очень сильно. А физике известно, что сильное поле может рождать в основном пары - частицы и античастицы. И наши вычисления показали, что эти пары, если брать тяжёлые частицы с особой массой, так называемое действительное объединение, действительно могут дать то самое число частиц, которое мы сегодня видим и наблюдаем в космологии. Это число называется числом Эддингтона-Дирака. То есть в ранней Вселенной не было этих частиц. Поэтому не было вблизи того, что называют началом Вселенной, не было бесконечной плотности вещества, потому что его просто не было. Оно возникло потом, это вещество. Оно возникло в виде элементарных частиц.
Что было далее. Далее были первые три минуты Вселенной, как объясняет Стивен Вайнберг в своей книге «Первые три минуты». Именно в это время произошли, возникли первые атомные ядра. Это были, конечно, лёгкие атомные ядра. Это был дейтерий, это был тритий, это был литий. Потом, дальше был большой период - 300 тысяч световых лет - и после этого началось возникновение первых атомов, а далее возникли звёзды, звёзды и галактики. И, наконец, внутри особых звёзд, сверхновых, возникли тяжёлые элементы, в частности углерод, из которого составлено наше тело.
Мы когда-то в прошлом были внутри звёзд. И поэтому, когда мы смотрим на ночное небо, мы можем задуматься. К сожалению, мы не видим сверхновых, которые вспыхивают, в основном, в других галактиках. Но если мы придём в хорошую обсерваторию, например, лаборатория САО на Кавказе, то нам их покажут, там почти каждый день регистрируют вспышки сверхновых в других галактиках. Так вот, мы были внутри сверхновых, мы оттуда были выброшены. Мы дети этих звёзд. И поэтому, глядя на это небо, мы не должны думать, что оно чужое. Мы там на самом деле когда-то были. Конечно, не мы, как здесь сидящие, но наши атомы, эти ядра, они там были, они оттуда, и они это помнят.
И потом, наконец, когда это было выброшено в пространство, на планете Земля началась биологическая эволюция, и возникло самое сложное образование во Вселенной, которое сегодня известно, это человеческий мозг. Поэтому Вселенная представляет сегодня удивительным образом рационально организованную целостность, когда от самого простого мы идём к наиболее сложному. И эту историю нам сегодня рассказывают.
Но теперь возникает главный вопрос: ну, а что такое, всё-таки, самое начало? Что значит начало Вселенной, начало времени? Что об этом можно сказать? Первым этот вопрос, как мы знаем, задал блаженный Августин в пятом веке новой эры. Он в «Исповеди» обсуждает проблему того, что такое начало Вселенной. При этом он отвечает на такой вопрос, его спрашивали: а что делал Бог до сотворения Вселенной? На что блаженный Августин сказал: он создавал ад для тех, кто задаёт глупые вопросы.
Нужно сказать, именно это повторил Хокинг, кстати, не ссылаясь почему-то на блаженного Августина, хотя я это говорил Хокингу и Полу Дэвису в своё время, когда они сюда приезжали. Кстати, Пол Дэвис потом стал об этом говорить. Хокинг в своей книжке «Краткая история времени» говорит так, что, когда мы спрашиваем, а что было до начало Вселенной, то это тоже самое, что спрашивать, а что южнее Южного полюса? Просто понятие «до» теряет свой смысл до этой точки начала Вселенной. Есть только «после». Так же, как на Южном полюсе, если вы спросите, «а что южнее?» вам скажут: простите, но это вопрос глупый. Всё севернее. Блаженный Августин тоже так же на это отвечал. Если вдуматься в то, что он сказал.
Итак, начало Вселенной, как начало времени. Что это такое? Что мы можем об этом сказать? Если говорить о классической общей теории относительности, то мы тут обсуждали теорию Хокинга, а также идею Глинера и Гута, и дальше Линде о так называемой инфляционной космологии, где говорится о том, что Вселенная до стадии Фридмана расширялась более ускоренно - по закону экспоненты. Но всё равно, и там возникает на самом деле этот вопрос. Вселенная расширялась. Но она расширялась от очень маленького объёма, который соответствует планковским размерам. Для того чтобы говорить о том, что происходило на этих размерах, и знать, что такое точка начала, необходимо привлекать квантовую физику. Причём квантовую физику не только для того, что находится внутри Вселенной, но и для описания её геометрии. Это квантовая гравитация.
Всё, чем занимались мы, допустим, начиная с 69-го года, относилось на самом деле к квантовым процессам внутри Вселенной. Пространство-время, которое классическое, описывается классически в теории относительности. Здесь же этого недостаточно, если мы хотим пытаться ответить на вопрос: а что же такое само возникновение времени? А что мы вообще тут можем говорить, что значит возникновение времени, что за слово «возникновение», если мы говорим о чём-то, что есть возникновение времени, в котором всякое возникновение существует? Как ставить здесь вопрос? Об этом нужно рассуждать не только физикам и математикам, человек, задающий этот вопрос, должен быть ещё и философом, чтобы понять, что же всё-таки он спрашивает.
И вот квантовая космология, которая возникла где-то в середине 80-х годов, пытается ответить на этот вопрос, а именно, пытается описать раннюю Вселенную в рамках квантовой физики. И произошло введение понятия так называемой «волновой функции Вселенной». Михаил Леонидович довольно много занимается этой темой. Я думаю, он прокомментирует лучше эту ситуацию.
М.Ф. Но здесь я хочу вернуться назад. У Вас была передача «Квантовая гравитация», и я хочу немножко добавить, что же такое квантовая гравитация, а потом объяснить, что такое квантовая космология. Проблема квантования в гравитации, в общем-то, довольно сложна, и нельзя сказать, что существует какая-то теория. Существуют просто различные подходы. То есть если рассматривать, скажем, какие-то слабые гравитационные поля на фоне почти плоского пространства Минковского, то тогда удобно провести такое квантование, которое обычно проводится в электродинамике. Есть такая наука - квантовая электродинамика.
Квантование электромагнитного поля даёт фотоны. И соответственно такая же процедура, проделанная над слабым гравитационным полем, даёт кванты гравитационного поля, которые называются гравитонами. В отличие от фотонов, они имеют спин 2. Сейчас просто невозможно в этой передаче это объяснить - это потребует много времени и может даже быть непонятно. Нужно только сказать следующее: эти гравитоны могут быть описаны в виде некоего тензорного поля. Общая теория относительности вообще построена на тензорах, то есть уравнения Эйнштейна - тензорные уравнения. И для этого тензорного поля, если развивать такой формализм, как в квантовой электродинамике, оказывается, что возникают неустранимые расходимости. Как физики говорят, это теория неперенормируема, и, в общем, до конца её построить не удаётся. Хотя, в принципе, какие-то простые задачи решать можно. Скажем, у вас есть атом водорода, и есть какие-то переходы, и излучается, скажем, электромагнитное излучение, дипольное. Есть также квадрупольные переходы. И излучается электромагнитное излучение квадрупольное, и излучается гравитационное излучение. Вы можете вычислить с помощью этого формализма, какое будет гравитационное излучение - как некий поток гравитонов. Такие простые задачки можно решить. Но до конца теория эта не строится.
И когда пытались её как-то улучшить, то оказалось, что есть следующие пути. Что нужно, во-первых, рассматривать уже пространство более высокого числа измерений, то есть, скажем, 11-мерное пространство, и там строится такая наука, которая называется супергравитацией. И эта наука, она и дальше развивалась, и сейчас есть такой совершенно новый подход - это теория суперструн. В низкоэнергетическом приближении в рамках этих теорий удаётся устранить эти расходимости, правда, может быть, не полностью, но, во всяком случае, эта задача, в общем, как-то решается. Но эти теории выходят за рамки нашей передачи. Я о них говорить не буду. А я хочу сказать ещё об одном подходе, который оказался довольно плодотворным.
Это когда вы рассматриваете гравитацию не как некое физическое поле, скажем, электромагнитное поле или какое-нибудь поле сильных взаимодействий, или слабых, а когда вы рассматриваете её с точки зрения общей теории относительности. То есть гравитацию рассматриваете как некую геометрию. И будет квантование не поля, а квантование геометрии в целом. И тогда окажется, что это квантование проще. По крайней мере, идейно проще, чем квантование полей. То есть оно напоминает то квантование, которое мы имеем в нерелятивистской квантовой механике. И это направление, в котором такой подход реализуется, получило название квантовой геометродинамики. Она была разработана в 60-х годах, в основном, Уилером и ДеВиттом. Основное уравнение в этом подходе - это так называемое уравнение Уилера-ДеВитта. И оказалось, что это уравнение Уилера-ДеВитта очень похоже на уравнение Шрёдингера - то уравнение, которое известно из квантовой механики. Только с одним исключением, что в этом уравнении энергия равна нулю. Потому что в этой теории не используется время.
То есть вся теория строится только в трехмерном пространстве. Вы берёте четырехмерный мир и делаете в каждый момент времени какие-то фотографии. И потом эти фотографии как-то комбинируете, а время не учитываете. Из этих фотографий, которые как бы отражают только геометрию мира, вы пытаетесь создать, как-то извлечь некую динамику. И эта динамика извлекается. То есть вы получаете уравнение типа уравнения Шрёдингера, решаете его и возвращаетесь по сути дела, как бы в лоно обычной квантовой механики. И там можно, в общем-то, очень много решить проблем, в частности, например, проблему рождения Вселенной. Но есть ещё важный момент - это то, что в 73-м году Фомин и Трайен предложили идею рождения Вселенной в результате некоей квантовой флуктуации. И оказывается, что это можно описать с помощью этого уравнения - типа уравнения Шрёдингера.
Это было сделано сначала Виленкиным, а потом уже многими другими. В частности, волновая функция Вселенной, о которой упоминал Андрей Анатольевич, была предложена Хартлом и Хокингом. И в рамках такой модели решается задача о рождении Вселенной, как некотором процессе, аналогичном альфа-распаду. То есть у вас есть частица, она при распаде испускается в результате некоего туннелирования - классически запрещённого процесса, когда частица проходит под барьером. То есть это означает, что её энергия меньше высоты барьера. Тем не менее, за счёт квантовых эффектов она оказывается по другую сторону барьера. Так вот Вселенная рождается точно так же, как это было установлено в данном подходе.
И вероятность рождения Вселенной очень маленькая. По крайней мере, она, видимо, не больше, чем е в степени минус 10 в девятой степени (е - около 2,72). Что можно ещё сказать? Ещё можно упомянуть следующую вещь, что весь этот аппарат, когда он применён к квантовой космологии, просто следует уравнению типа Шрёдингера. Я привёл пример, как рождается Вселенная. Есть интересный ещё такой момент, что на примере модели Фридмана, математический аппарат сводится к следующему. У нас есть уравнения Эйнштейна. Пространство у нас однородное и изотропное, и вы сводите эти уравнения Эйнштейна, их, в общем-то, довольно много (десять), только к двум уравнениям. Одно из этих уравнений, выражает просто закон сохранения энергии: кинетическая энергия плюс потенциальная равняется полной энергии.
И вот что получается из этого уравнения, переходя к обычной процедуре квантования, как мы это обычно делаем. Здесь было много передач по квантовой механике: специфика квантования сводится к тому, что вы заменяете некие физические величины на операторы, то есть у вас есть, допустим, импульс, и вы заменяете его на оператор. Но что это означает? Это очень простая вещь. У вас есть корпускулярно-волновой дуализм, т.е. если у вас есть формула для энергии и есть формула для волны, и если вы отождествляете эти формулы, то оказывается, что импульсу соответствует некая операция дифференцирования по координате, умноженная на мнимую единицу.
И если проделать с уравнением Фридмана, которое выражает закон сохранения энергии, такую операцию, то есть заменить импульс в этом уравнении на оператор импульса, то вы получаете уравнение типа уравнения Шрёдингера. То есть оказывается следующая вещь, что вы исходите из уравнений Эйнштейна, а получаете уравнение квантовой механики. То есть это совершенно удивительная вещь. В этом, собственно, в квантовой космологии и заключается синтез общей теории относительности и квантовой механики, то есть вы «перевариваете» общую теорию относительности, превращая её в квантовую механику. Причём, интересно следующее: можно пойти и дальше. Лемэтр, которого некоторые называют отцом квантовой космологии, предложил первоатом, а после этого у Уилера, ДеВитта и Хокинга были такие высказаны идеи, что решение этого уравнения, типа уравнения Шрёдингера, может дать что-то типа атома водорода. Потому что у уравнения Шрёдингера одно из точных решений - это атом водорода. Так вот оказалось, что из этого уравнения Уилера-ДеВитта, применённого к квантовой космологии, можно получить решение, которое совпадает с решением для атома водорода, то есть то, что предлагал ДеВитт, уже реализовано математически.
Что ещё можно сказать? Да, здесь ещё есть вот некая проблема, о которой сейчас Андрей Анатольевич скажет.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33


А-П

П-Я