Ассортимент, аккуратно доставили 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Также было установлено, что
понятие электронной орбиты в некотором смысле сомнительно. Однако
вопреки последнему утверждению можно сказать, что все же, по крайней мере в
принципе, можно наблюдать электрон на его орбите. Быть может, мы и увидели
бы движение электрона по орбите, если бы могли наблюдать атом в микроскоп с
большой разрешающей силой. Однако такую разрешающую силу нельзя получить в
микроскопе, применяющем обычный свет, поскольку для этой цели будет пригоден
только микроскоп, использующий г-лучи, с длиной волны меньшей размеров
атома. Такой микроскоп до сих пор не создан, но технические затруднения не
должны нас удерживать от обсуждения этого мысленного эксперимента. Можно ли
на первой стадии перевести результаты наблюдения в функцию вероятности? Это
возможно, если выполняется после опыта соотношение неопределенностей.
Положение электрона известно с точностью, обусловленной длиной волны
г-лучей. Предположим, что перед наблюдением электрон практически находится в
покое. В процессе наблюдения по меньшей мере один квант г-лучей обязательно
пройдет через микроскоп и в результате столкновения с электроном изменит
направление своего движения. Поэтому электрон также испытает воздействие
кванта. Это изменит его импульс и его скорость. Можно показать, что
неопределенность этого изменения такова, что справедливость соотношения
неопределенностей после удара гарантируется. Следовательно, первый шаг не
содержит никаких трудностей. В то же время легко можно показать, что нельзя
наблюдать движение электронов вокруг ядра. Вторая стадия -- количественный
расчет функции вероятности -- показывает, что волновой пакет движется не
вокруг ядра, а от ядра, так как уже первый световой квант выбивает электрон
из атома. Импульс г-кванта значительно больше первоначального импульса
электрона при условии, если длина волны г-лучей много меньше размеров атома.
Поэтому уже достаточно первого светового кванта, чтобы выбить электрон из
атома. Следовательно, нельзя никогда наблюдать более чем одну точку
траектории электрона; следовательно, утверждение, что нет никакой, в обычном
смысле, траектории электрона, не противоречит опыту. Следующее наблюдение --
третья стадия -- обнаруживает электрон, когда он вылетает из атома. Нельзя
наглядно описать, что происходит между двумя следующими друг за другом
наблюдениями. Конечно, можно было бы сказать, что электрон должен находиться
где-то между двумя наблюдениями и что, по-видимому, он описывает какое-то
подобие траектории, даже если невозможно эту траекторию установить. Такие
рассуждения имеют смысл с точки зрения классической физики. В квантовой
теории такие рассуждения представляют собой неоправданное злоупотребление
языком. В настоящее время мы можем оставить открытым вопрос о том, касается
ли это предложение формы высказывания об атомных процессах или самих
процессов, то есть касается ли это гносеологии или онтологии. Во всяком
случае, при формулировании положений, относящихся к поведению атомных
частиц, мы должны быть крайне осторожны.
Фактически мы вообще не можем говорить о частицах. Целесообразно во
многих экспериментах говорить о волнах материи, например о стоячей волне
вокруг ядра. Такое описание, конечно, будет противоречить другому описанию,
если не учитывать границы, установленные соотношением неопределенностей.
Этим ограничением ликвидируется противоречие. Применив понятия "волна
материи" целесообразно в том случае, если речь идет об излучении атома.
Излучение, обладая определенной частотой и интенсивностью, дает нам
информацию об изменяющемся распределении зарядов в атоме; при этом волновая
картина ближе стоит к истине, чем корпускулярная. Поэтому Бор советовал
применять обе картины. Их он назвал дополнительными. Обе картины,
естественно, исключают друг друга, так как определенный предмет не может в
одно и то же время быть и частицей (то есть субстанцией, ограниченной в
малом объеме) и волной (то есть полем, распространяющимся в большом объеме).
Но обе картины дополняют друг друга. Если использовать обе картины, переходя
от одной к другой и обратно, то в конце концов получится правильное
представление о примечательном виде реальности, который скрывается за нашими
экспериментами с атомами.
Бор при интерпретации квантовой теории в разных аспектах применяет
понятие дополнительности. Знание положения частицы дополнительно к знанию ее
скорости или импульса. Если мы знаем некоторую величину с большой точностью,
то мы не можем определить другую (дополнительную) величину с такой же
точностью, не теряя точности первого знания. Но ведь, чтобы описать
поведение системы, надо знать обе величины. Пространственно-временное
описание атомных процессов дополнительно к их каузальному или
детерминистскому описанию. Подобно функции координат в механике Ньютона,
функция вероятности удовлетворяет уравнению движения. Ее изменение с
течением времени полностью определяется квантово-механическими уравнениями,
но она не дает никакого пространственно-временного описания системы. С
другой стороны, для наблюдения требуется пространственно-временное описание.
Однако наблюдение, изменяя наши знания о системе, изменяет теоретически
рассчитанное поведение функции вероятности.
Вообще дуализм между двумя различными описаниями одной и той же
реальности не рассматривается больше как принципиальная трудность, так как
из математической формулировки теории известно, что теория не содержит
противоречий. Дуализм обеих дополнительных картин ярко выявляется в гибкости
математического формализма. Обычно этот формализм записывается таким
образом, что он похож на ньютонову механику с ее уравнениями движения для
координат и скоростей частиц. Путем простого преобразования этот формализм
можно представить волновым уравнением для трехмерных волн материи, только
эти волны имеют характер не простых величин поля, а матриц или операторов.
Этим объясняется, что возможность использовать различные дополнительные
картины имеет свою аналогию в различных преобразованиях математического фор-
мализма и в копенгагенской интерпретации не связана ни с какими
трудностями. Затруднения в понимании копенгагенской интерпретации возникают
всегда, когда задают известный вопрос: что в действительности происходит в
атомном процессе? Прежде всего, как уже выше говорилось, измерение и
результат наблюдения всегда описывается в понятиях классической физики. То,
что выводится из наблюдения, есть функция вероятности. Она представляет
собой математическое выражение того, что высказывания о возможности и
тенденции объединяются с высказыванием о нашем знании факта. Поэтому мы не
можем полностью определить результат наблюдения. Мы не в состоянии описать,
что происходит в промежутке между этим наблюдением и последующим. Прежде
всего это выглядит так, будто мы ввели субъективный элемент в теорию, будто
мы говорим, что то, что происходит, зависит от того, как мы наблюдаем
происходящее, или по крайней мере зависит от самого факта, что мы наблюдаем
это происходящее. Прежде чем разбирать это возражение, необходимо совершенно
точно выяснить, почему сталкиваются с подобными трудностями, когда стараются
описать, что происходит между двумя следующими друг за другом наблюдениями.
Целесообразно в этой связи обсудить следующий мысленный эксперимент.
Предположим, что точечный источник монохроматического света испускает свет
на черный экран, в котором имеются два маленьких отверстия. Поперечник
отверстия сравним с длиной волны света, а расстояние между отверстиями
значительно превышает длину волны света. На некотором расстоянии за экраном
проходящий свет падает на фотографическую пластинку. Если этот эксперимент
описывать в понятиях волновой картины, то можно сказать, что первичная волна
проходит через оба отверстия. Следовательно, образуются две вторичные
сферические волны, которые, беря начало у отверстий, интерферируют между
собой. Интерференция произведет на фотографической пластинке полосы сильной
и слабой интенсивности -- так называемые интерференционные полосы.
Почернение на пластинке представляет собой химический процесс, вызванный
отдельными световыми квантами.
Поэтому важно также описать эксперимент с точки зрения представлений о
световых квантах. Если бы можно было говорить о том, что происходит с
отдельным световым квантом в промежутке между его выходом из источника и
попаданием на фотографическую пластинку, то рассуждать можно было бы
следующим образом. Отдельный световой квант может пройти или только через
первое, или только через второе отверстие. Если он прошел через первое
отверстие, то вероятность его попадания в определенную точку на
фотографической пластинке не зависит от того, закрыто или открыто второе
отверстие. Распределение вероятностей на пластинке будет таким, будто
открыто только первое отверстие. Если эксперимент повторить много раз и
охватить все случаи, в которых световой квант прошел через первое отверстие,
то почернение на пластинке должно соответствовать этому распределению
вероятностей. Если
рассматривать только те световые кванты, которые прошли через второе
отверстие, то почернение будет соответствовать распределению вероятностей,
выведенному из предположения, что открыто только второе отверстие.
Следовательно, общее почернение должно быть точной суммой обоих почернений,
другими словами -- не должно быть никакой интерференционной картины. Но мы
ведь знаем, что эксперимент дает интерференционную картину. Поэтому
утверждение, что световой квант проходит или через первое, или через второе
отверстие, сомнительно и ведет к противоречиям. Из этого примера видно, что
понятие функции вероятности не дает пространственно-временного описания
события, происходящего в промежутке между двумя наблюдениями. Каждая попытка
найти такое описание ведет к противоречиям. Это означает, что уже понятие
"событие" должно быть ограничено наблюдением. Этот вывод весьма существен,
так как, по-видимому, он показывает, что наблюдение играет решающую роль в
атомном событии и что реальность различается в зависимости от того,
наблюдаем мы ее или нет. Чтобы сделать это утверждение более ясным,
проанализируем процесс наблюдения.
Уместно вспомнить, что в естествознании нас интересует не Универсум в
целом, включающий нас самих, а лишь определенная его часть, которую мы и
делаем объектом нашего исследования. В атомной физике обычно эта сторона
представляет собой чрезвычайно малый объект, именно атомные частицы или
группы таких частиц. Но дело даже не в величине; существенно то, что большая
часть Универсума, включая и нас самих, не принадлежит к предмету наблюдения.
Теоретическое истолкование эксперимента начинается на уровне обеих стадий, о
которых уже говорилось. На первой стадии дается описание эксперимента в
понятиях классической физики. Это описание в конечном счете связывается на
данной стадии с первым наблюдением, и затем описание формулируется с помощью
функции вероятности. Функция же вероятности подчиняется законам квантовой
механики, ее изменение с течением времени непрерывно и рассчитывается с
помощью начальных условий. Это вторая стадия. Функция вероятности объединяет
объективные и субъективные элементы. Она содержит утверждения о вероятности
или, лучше сказать, о тенденции (потенция в аристотелевской философии), и
эти утверждения являются полностью объективными. Они не зависят ни от какого
наблюдения. Кроме этого, функция вероятности содержит утверждения
относительно нашего знания системы, которое является субъективным, поскольку
оно может быть различным для различных наблюдателей. В благоприятных случаях
субъективный элемент функции вероятности становится пренебрежительно малым в
сравнении с объективным элементом, тогда говорят о "чистом случае".
При обращении к следующему наблюдению, результат которого
предсказывается из теории, важно выяснить, находился ли предмет до или по
крайней мере в момент наблюдения во взаимодействии с остальной частью мира,
например с экспериментальной установкой, с измерительным прибором и т. п.
Это означает, что урав-
нение движения для функции вероятности содержит влияние взаимодействия,
оказываемое на систему измерительным прибором. Это влияние вводит новый
элемент неопределенности, поскольку измерительный прибор описывается в
понятиях классической физики. Такое описание содержит все неточности в
отношении микроскопической структуры прибора, известные нам из
термодинамики. Кроме того, так как прибор связан с остальным миром, то
описание фактически содержит неточности в отношении микроскопической
структуры всего мира. Эти неточности можно считать объективными, поскольку
они представляют собой простое следствие того, что эксперимент описывается в
понятиях классической физики, и поскольку они не зависят в деталях от
наблюдателя. Их можно считать субъективными, поскольку они указывают на наше
неполное знание мира. После того как произошло взаимодействие, даже в том
случае, если речь идет о "чистом случае", функция вероятности будет
содержать объективный элемент тенденции или возможности и субъективный
элемент неполного знания.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27


А-П

П-Я