https://wodolei.ru/catalog/kryshki-bide/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Нетрудно понять безоговорочную веру в справедливость законов механики Ньютона после такого успеха.Но механика – лишь небольшая часть науки. Не рано ли гордиться успехами естествознания? Сколько еще существует явлений другого порядка – оптических, электрических, магнитных и прочее. И все равно законы механики превыше всего!Так рассуждало подавляющее большинство естествоиспытателей. Разные явления отличаются друг от друга лишь видом силового поля. Уже Ньютон дал совсем неплохую классификацию сил. Кроме тяготения, он выделял магнитные, электрические, оптические, химические и когезионные силы. Задача сводилась лишь к тому, чтобы знать законы соответствующих силовых полей. Если они известны, то дальше законы Ньютона по-прежнему позволят определить судьбу тела совершенно так же, как они могут предсказать поведение планеты под действием тяготения.Ну, а природа сил?Как ни странно, этот вопрос мало кого волновал.Некоторую роль в отсутствии такого интереса, вероятно, играло взаимоотношение науки с религией. И правда, вопрос этот, оставленный без ответа, всегда позволяет при желании включить в схему господа бога. Некоторые механики (Мопертюи) даже пытались доказывать существование бога, аргументируя математической выразительностью основных принципов механики. Другие заявляли, что гипотеза о существовании бога ничего не прибавляет к науке и нисколько не продвигает нас в понимании природы сил (Лаплас).Но были и такие исследователи, которые желали навести порядок в царстве сил и свести их к одной причине.Думать о природе сил – это значит размышлять о строении материи. Мир Демокрита, состоящий из частиц и пустоты, находил многих приверженцев. Ньютоновская механика позволила заменить наивные крючочки, связывающие атомы, силами тяготения, действующими на расстоянии. Атом стал фигурировать в сочинениях того времени как шаровидное тело. Представлялось, что взаимодействия этих невидимых шариков как-то объясняют свойства веществ.Но в начале XVII века великий Декарт предложил другую теорию мироздания. В основе всего лежит невидимый, всепроникающий эфир. Пустоты в мире нет, все заполнено этим носителем или носителями, так как обсуждалась возможность, что каждое явление имеет свой эфир: электрическое – электрический, оптическое – световой и т. д.Гипотеза эфира объясняла действие тел на расстоянии. И тяготение и электричество действуют самым превосходным образом в вакууме, без всякой среды. В это трудно поверить, и в особенности трудно, если, как это было доказано в XIX веке, электромагнитные действия распространяются не мгновенно: одно тело чувствовало приближение другого не сразу, а с запозданием. Ясно, что действие распространялось в чем-то, и этим «чем-то» должен быть материальный носитель.В учении об электромагнитных полях, развитом Фарадеем, была спокойная уверенность в существовании эфира. Хотя эфир никак не участвовал в формулах, управляющих поведением электрических, магнитных и световых полей, обойтись без него казалось невозможным, и исследователи не сомневались в его реальности.Что же такое эфир? Возможно, это своеобразная жидкость, находящаяся в вихревом движении; может быть, это спокойная жидкость, в которой пульсируют более плотные шары. Для объяснения световых явлений оказалось нужным предположить, что эфир обладает свойствами твердого тела – в нем могут распространяться сдвиговые волны (сдвиг – исключительное свойство твердого тела).Хотя и не было создано красивой универсальной модели эфира, которая объясняла бы все физические явления, хотя не было никакой ясности во взаимоотношении эфира с атомами и молекулами, уверенность в существовании общего механизма была достаточно бесспорной.В конце XIX века появились замечательные исследования Клаузиуса, Больцмана и Гиббса. Оказалось, что, применяя законы механики и теории вероятности к поведению больших скопищ молекул (в основном молекул газа), можно превосходно объяснять физические свойства тел. Эти работы опять укрепляли уверенность в том, что мир покоится на трех китах – трех законах ньютоновской механики, которые управляют движением невидимых частиц с тем же успехом и с той же точностью, что и движением небесных тел.Отсутствие в то время каких-либо надежд на изучение мира в субмикроскопическом масштабе отодвигало проблемы строения материи в сторону. В некоторой степени эти проблемы рассматривались как философские, метафизические, стоящие в стороне от естествознания.Это особенно отчетливо видно из высказываний недальновидных философов вроде Маха или Оствальда, которые требовали, чтобы вопросы строения были изгнаны из физики. Видимо, отсутствие знаний об эфире, о молекулах, о природе сил не рассматривалось как нечто, чего физике недостает.Картина мира была построена: тела и частицы движутся так, как велят законы Ньютона. Формулы сил, представляющие их через свойства взаимодействующих тел и расстояния между ними, известны. Остается подставить их в дифференциальные уравнения, и все задачи физики будут решены. Физика в основном законченная наука.Собираясь писать эту главу, я стал листать старую энциклопедию Брокгауза и Ефрона. Том, в котором помещена статья «Теплота», вышел в свет не так уж давно, в 1891 году. Автор статьи добросовестно изложил законы термодинамики, способы измерения тепла и только несколько фраз сказал о природе тепла: «Мы уверены в том, что тепло связано с какими-то движениями частиц вещества». Вполне ясно из контекста, что автор не считает существенным природу движения, он не относит это к физике.С такой позиции не раз выступали в конце XIX века физики-теоретики. Они заявляли о законченности физики как науки. История запомнила немало курьезов этого толка. Так, например, учитель Макса Планка не советовал ему заниматься физикой.– Все уже сделано в этой науке, – наставлял Макса воспитатель, – займитесь чем-нибудь другим.Не послушавшись совета, Планк через несколько лет выполнил свое знаменитое исследование о квантовом излучении, которое легло в основу современной физики. Талантливый и умный физик лорд Кельвин сказал в одном из своих выступлений: «Теоретическая физика представляет собой стройное и законченное здание. На ясном небе физики имеются всего лишь два небольших облачка. Я думаю, что эти два частных вопроса будут скоро разрешены и физикам XX века уже нечего будет делать».
Вам интересно узнать, что это за два облачка? Надо отдать Кельвину должное в том, что он упомянул именно эти две неприятности (неприятности с точки зрения физиков конца XIX века). Одна из них – это постоянство скорости света, обнаруженное в опыте Майкельсона. Из этого облачка выросла теория относительности! Другая – кривая интенсивности излучения в зависимости от длины волны. Теория этого времени требовала, чтобы кривая лезла вверх с уменьшением длины волны, то есть при переходе в голубую сторону спектра. Но опыт привел к «голубой катастрофе» – кривая имела максимум, перевалив через который падала к волнам малой длины. Эта вторая неприятность привела к квантовой физике, когда Планк выяснил, в чем здесь дело. Так что Кельвин угадал неплохо.Теперь, надеюсь, читателю будет ясна полная растерянность ведущих физиков того времени, когда начало XX века обрушило на их головы потрясающие открытия. Разочарование их было столь велико, что некоторые из них (Лоренц) выражали свое сожаление – зачем они дожили до этого времени.Это хороший урок, и история науки запомнит, как небезопасно самомнение века, выражающего претензию на окончательное познание истины.Посмотрим теперь, что же произошло в XX столетии. Глава 7Первая атака на здравый смысл …где выясняется, что слова «само собой разумеется» надо изгнать из лексикона физики. Попутно автор поставил перед собой задачу объяснить, что значит «объяснить». Великолепное здание физической науки, воздвигнутое в XIX веке, красовалось недолго. Рухнуло оно в 1905 году. Это был год публикации одного из самых замечательных творений человеческого гения – теории относительности, созданной двадцатипятилетним Альбертом Эйнштейном.На нескольких десятках страниц при помощи строжайшей математической логики были изложены выводы из двух аксиом. Выводы поразительно неожиданные, они ломали существовавшие дотоле представления, разрушали фундамент физики. Исследование захватывало своей глубиной, поражало необычной придирчивостью к каждому на первый взгляд само собой разумеющемуся утверждению. Было невозможно вырваться из неумолимой логики рассуждений Эйнштейна, которая приводила читающих, несмотря на их внутренний протест, к парадоксальным результатам: выводы были неизбежным следствием двух аксиом.Удивительно, что каждая из них не была неожиданной для читателя того времени. Эйнштейн лишь первый задумался над тем, к каким следствиям приведут эти две аксиомы вместе.Взятые из различных областей физики, обе аксиомы впервые встретились в одной статье. Что же это за аксиомы?Первая из них говорит следующее:Если два наблюдателя движутся один по отношению к другому прямолинейно и равномерно, то каждый из них находится в совершенно одинаковых условиях.Как видите, нет способа установить, кто из них движется, а кто покоится на самом деле. Бессодержательно спрашивать, кто находится в «истинном» движении. Нет такого понятия, как абсолютное движение. Движение относительно!Этот хорошо известный со времен Галилея принцип механики утверждает, что покой нельзя отличить от равномерного прямолинейного движения. И в общем-то хорошо сочетается со «здравым смыслом». Каждый знает по своим ощущениям, что с закрытыми глазами не отличишь покоя от плавного движения корабля или самолета.Иначе обстоит дело со второй аксиомой. Хотя положение о том, что скорость света оказывается одинаковой для разных наблюдателей вне зависимости от их движения (это и есть вторая аксиома), было в то время физикам известно, оно все же рассматривалось как некий странный опытный факт, в котором еще надо разобраться. Эйнштейн возвел это странное положение дел в ранг аксиомы.Явление, о котором идет речь, было обнаружено Майкельсоном и Морлеем в 1887 году. Исследователи поставили перед собой задачу сравнить скорость распространения света с востока на запад и с севера на юг. Такое сравнение похоже на сопоставление результатов измерений двух лабораторий – одной, движущейся вместе с нашей планетой, а другой – не участвующей в суточном движении Земли. Опыт показал, что скорость света одинаковая. Результат эксперимента делал непонятным поведение носителя света – всепроникающего невесомого эфира. Различные попытки примирения опыта Майкельсона с физикой XIX века безуспешно продолжались до 1905 года. Эйнштейн разрубил гордиев узел – непонятный факт возводился в принцип, в исходное понятие. Надо было считать это явление фактом, данным нам природой.Объединение двух аксиом означало совершенно новую формулировку принципа относительности. То, что верно для скорости света, справедливо и для любых других проявлений электромагнетизма. Поэтому, утверждал Эйнштейн, никакими физическими опытами нельзя выделить одну систему из бесконечного числа систем, движущихся равномерно и прямолинейно друг по отношению к другу. Эти системы совершенно равноправны.К каким же выводам приведут нас эти две аксиомы? Студенты Московского университета приема 2965 года будут, наверное, усваивать эти выводы на практике. Преподаватель попросит Мишу и Петю занять места в двух тождественных ракетах, нажмет нужные рычаги и отправит их в учебное путешествие. Для выяснения сущности теории относительности проще всего поступить следующим образом: космические вагоны надо отправить по одной линии в разные стороны; в каждом вагоне на противоположных боковых стенках следует поместить источник и приемник света. Перед отправлением Миша и Петя тщательно сверяют свои часы и налаживают радиоприемники и передатчики.Первое задание преподавателя звучит так: измерить по часам время, необходимое для прохождения света от одной боковой стены своего вагона до противоположной. После того как ускоряющие двигатели были выключены и вагоны перешли в режим равномерного движения, студенты приступили к измерению времени.– Все в порядке, – сообщают они друг другу и преподавателю, – передаем результаты.Цифры совпадают: вагоны в точности одинаковые, опыты тождественные – иначе и быть не может, – время по часам Миши, измеряемое Мишей, и время по часам Пети, измеряемое Петей, течет одинаково.Второе задание заключается в измерении того же события, но на чужом корабле. Теперь Миша измеряет время прохождения светового луча в Петином корабле, а Петя определяет время такого же события в Мишином корабле. Измерения, естественно, носят уже другой характер. Мгновения, соответствующие началу и концу измеряемого интервала времени, могут быть сообщены на чужой корабль при помощи радиосигнала. Миша измеряет время между приходами радиосигналов, которые послал Петя, а Петя измеряет интервал времени, который проходит между радиосигналами, посланными Мишей. Теперь Миша измеряет время, идущее по часам Пети, а Петя измеряет время, идущее по часам Миши. Измерения дают другой результат: у обоих студентов получились опять-таки одинаковые цифры (условия измерения полностью симметричны), но цифры оказались несколько большими, чем в первом измерении. Попутешествовав на своих ракетах в разных условиях, студенты устанавливают на опыте следующее. Для наблюдателя, неподвижного по отношению к событию, временно́й интервал события имеет какое-то характерное значение. Движущиеся наблюдатели для этого же события будут получать бо́льшие цифры, и при этом тем большие, чем быстрее они движутся.Оказывается, время относительно. Результат измерения времени зависит от состояния движения измеряющего по отношению к измеряемому событию.– Но этот результат эксперимента есть строгое следствие аксиом Эйнштейна, – поясняет Миша Пете (или Петя Мише;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22


А-П

П-Я