каскадный смеситель для ванны 

 


Чем же близка была Курчатову эта проблема? Видимо, прежде всего тем, что диктовалась она острыми нуждами практики. С развитием электрификации страны все больше строилось высоковольтных линий, все актуальнее становилась проблема их защиты от атмосферных разрядов, в первую очередь от ударов молнии.
...Так состоялась первая встреча Игоря Васильевича с молнией, правда, пока не атомной.
При ударе молнии в линию электропередачи резко возрастает напряжение. Чтобы линия не вышла из строя, избыток напряжения нужно быстро отвести в землю. Для этого на линиях и ставят разрядники. Когда линия находится под обычным напряжением, сопротивление разрядника должно быть очень велико, чтобы ток не уходил по нему в землю. При резком возрастании напряжения (удар молнии) сопротивление разрядника должно так же резко падать, иначе избыток напряжения не успеет уйти в землю и линия выйдет из строя.
Столь своеобразно работающие сопротивления в то время уже были известны и применялись в разрядниках за границей. Но они были сложны в производстве и потому очень дороги.
И. В. Курчатов и его ученик Л. И. Русинов решили создать новое саморегулирующееся сопротивление. Было ясно, что такое сопротивление можно создать не из сплошного материала, а из зернистого, в котором между зернами остается воздушный зазор. Этот зазор будет барьером на пути тока, пока напряжение не велико. При ударе молнии напряжение возрастет, наступит пробой, и лавина тока, словно через открывшийся шлюз, стечет в землю. Из какого же материала лучше всего изготовить такое зернистое сопротивление?
Зерна из этого материала должны при малых напряжениях служить почти изолятором, а при возникновении перенапряжений мгновенно становиться хорошим проводником.
Абрам Федорович написал: «Загадочными представлялись электрические свойства применявшихся в высоковольтной технике карборундовых предохранителей».
И. В. Курчатов и его сотрудники занимались применявшимися предохранителями и искали новые, разрабатывали, внедряли.
Цитирую их высказывания: «...в порядке проб испытаны прессованные порошки карборунда и сцементированный кварцем карборунд, изготовленный заводом „Ильич“. На этом карборунде мы и провели в дальнейшем наши исследования».
Итак, и Игорь Васильевич и его сотрудники остановились на сцементированном кварцем карборунде. Карборунд – карбид кремния. Чистый карборунд – бесцветные прозрачные кристаллы, с примесями он имеет черную или зеленую окраску. Для карборунда характерны высокая теплопроводность и твердость, близкая к алмазу.
Изготовив образцы с мелкокристаллической массой и большим числом зазоров, исследователи стали измерять уменьшение сопротивления с ростом напряжения, время запаздывания при срабатывании. Выходило, что карборундовая масса может отводить удары молний не хуже зарубежных разрядников.
С завода, где ждали карборундовую массу для производства, интересовались ходом работы, поторапливали. Как-то Игорь Васильевич предложил своим коллегам:
– Не перебраться ли нам на время в заводскую лабораторию?
Проверка показала, что лучшим по качеству является зеленый карборунд, а выпускался пока черный. Завод стал готовиться к выпуску зеленого карборунда. Игорь Васильевич ходил в цехи, подробно вникал в вопросы технологии, испытывал новые образцы.
...Шли испытания образцов, выяснялось, насколько принятая технология обеспечивает стабильность электрических характеристик карборундовой массы. Производственникам кое-что пришлось изменить. Потом изучали влияние на качество сопротивления размеров зерна, давления формовки и количества связки, для которой использовались огнеупорная глина, полевой шпат и кварц,
Но Курчатова особенно интересовал еще один вопрос – старение сопротивлений, тем более что об эту проблему «ломали зубы» многие исследователи за рубежом, хотя опубликованных материалов практически не было.
Пришлось идти нехоженой дорогой.
Искусственная молния бессчетное число раз обрушивалась на опытные образцы разрядников. После каждого исследователи определяли, отчего стареет карборунд. Выяснили: старение «...сводится к термическому распаду под влиянием искрового разряда в порах». Сделали вывод: выгоднее брать мелкозернистую массу, а поры карборунда заполнять диэлектриком. В итоге возросла «жизнестойкость» массы.
Когда разрядники пошли в производство, Игорь Васильевич решил сравнить их с применявшимися за рубежом тайритом и оцелитом. По некоторым характеристикам карборунд несколько уступал тайриту, но превосходил оцелит. Главное же – технология его изготовления была намного проще и доступнее для производства.
Игорь Васильевич посчитал необходимым определите длительность службы одного образца в естественных условиях. Получилось, что старение разрядника, включенного в линию, произойдет не ранее чем через пятнадцать лет. Делая скидки на условность расчета, продолжительность была взята в пять лет. И вывод следовал такой:

«Все сказанное позволяет нам утверждать, что уже сейчас карборундовая масса С = 100 может быть применима в качестве сопротивлений в высоковольтных разрядниках».


О большом напряжении в работе Игоря Васильевича в те годы говорят и многочисленные выступления его на семинарах в институте. Вот далеко не полный перечень докладов И. В. Курчатова в 1931 – 1932 годах. Ноябрь 1931 года. «О возможных объяснениях процессов в разрядниках». В том же месяце – еще доклад о теории сегнетоэлектриков. В декабре 1931 года он делает сообщение о своих работах. Семинар 1932 года открылся январским докладом Игоря Васильевича «О зажигании дуги». В мае он выступил с некоторыми соображениями по вопросу о формовке (о процессе выделения на положительном электроде полупроводникового выпрямителя плохо проводящего слоя).
С 13 по 18 сентября 1932 года в Ленинграде проходила конференция по теории твердых (неметаллических) тел, на которой присутствовали крупнейшие мировые специалисты. Наряду с другими докладчиком был и Игорь Васильевич. Он рассказал собравшимся физикам об электрических свойствах сегнетовой соли. А спустя месяц, 7 октября, Игорь Васильевич высказывал уже свои теоретические соображения о пробое в газе при высоких давлениях на очередном семинаре в институте.
И так месяц за месяцем, семинар за семинаром. Новые идеи, новые поиски. Все шире взгляд, все тверже научный почерк, все больше уверенности и целеустремленности,
И не удивительно, что, когда в 1934 году в СССР были введены ученые степени докторов и кандидатов наук, по ходатайству академиков А. Ф. Иоффе и С. И. Вавилова Высшая аттестационная комиссия присвоила И. В. Курчатову ученую степень доктора физико-математических наук. Решением общего собрания Академии наук он был утвержден в ученом звании действительного члена института по специальности «Физика».


Буря и натиск


На переломе

Интерес Курчатова к новой области науки – физике атомного ядра – возник не внезапно. Этот интерес постепенно, неуклонно нарастал в нем уже с того времени, когда его мысли были заняты сегнетоэлектриками, диэлектриками, разрядниками.
Тот факт, что он все больше и больше занимался новой тематикой, говорит в пользу его интуиции как ученого.
– Ни у кого я не видел такого дальнего прицела в науке, как у Игоря Васильевича, – сказал ученик Курчатова Константин Антонович Петржак.
Дальний прицел... Это, пожалуй, очень точное выражение. И в том, что Игорь Васильевич в 1932 году занялся ядерной тематикой, во многом сыграл роль этот прицел.
И то, что это произошло в 1932 году, тоже не случайность. 1932 год на пути проникновения в тайны атомного ядра имеет особое значение. В этом году английский ученый Дж. Чадвик открыл новую частицу – нейтрон, не несущую электрического заряда. Тогда же в физико-техническом институте родилась протонно-нейтронная модель ядра, идею которой выдвинул Дмитрий Дмитриевич Иваненко.
По инициативе А. Ф. Иоффе И. В. Курчатов, Д. Д. Иваненко, А. И. Алиханов и Д. В. Скобельцын расширяли фронт ядерных исследований в институте.
С ноября 1932 года стали регулярно проводиться ядерные семинары – по четвертым дням пятидневки, то есть пять раз в месяц. На них обсуждались все новейшие исследования по ОДРУ, квантовой механике, космическим лучам. Кроме сотрудников физтеха, на заседания приходили научные работники Других институтов. В среднем собиралось до 30—35 человек.
В январе 1933 года на одном из заседаний ядерного семинара Игорь Васильевич выступал с докладом «О некоторых работах из области строения ядра», в котором дал обзор последних исследований.
Второе выступление Игоря Васильевича состоялось в марте 1933 года. Темой выступления Игоря Васильевича было «расщепление ядер». Запомним дату: март 1933 года. Через два года уже выйдет в свет монография И. В. Курчатова; посвященная этому новому для науки явлению.
Участники семинаров услышали от Игоря Васильевича рассказ об искусственных превращениях ядер элементов под действием ядер тяжелого водорода (дейтерия), называемых дейтонами – частицами, состоящими из протона и нейтрона.
Эти реакции, впервые полученные группой американских атомников, тут же изученные И. В. Курчатовым, имеют важное значение и в настоящее время.
– При бомбардировке быстрыми дейтонами, – объяснял Курчатов участникам семинара, – все испытанные мишени, а именно: уголь, золото, платина, фтористый литий, окись кремния и латунь – излучают протоны с одними тем же пробегом... То обстоятельство, что во всех случаях получались протоны с одним и тем же пробегом, и привело в первый раз к представлению о расщеплении дейтона на протон и нейтрон...
В апреле 1933 года Игорь Васильевич выступил с сообщениями о работах Резерфорда по бомбардировке ядра тяжелыми частицами. Резерфорд еще в 1919 году обнаружил излучение протонов при бомбардировке азота альфа-частицами. Два года спустя он с Чадвиком опубликовал подробное исследование этого явления, в котором установил зависимость максимальной энергии протона, выброшенного в направлении движения альфа-частицы, от ее энергии.
– Так впервые было показано, – пояснил Курчатов потом в лекции в Московском университете, – что мы можем изменить строение ядра при помощи внешних воздействий. Этими работами было положено начало исследованиям над ядерными превращениями.
Причину успеха Резерфорда Курчатов видел в том, что он применил потоки альфа-частиц, движущихся со скоростью 20 тысяч километров в секунду. Зачем нужны такие скорости?
«Атом в целом электрически нейтрален, – пояснял Курчатов. – Благодаря этому возможно тесное сближение атомов разных элементов и этим обусловливается большая вероятность нормальных химических реакций, идущих за счет электронных обменов внешней оболочки атомов.
Нетрудно видеть, что совсем другие условия господствуют для ядер. При сближении ядер они будут испытывать громадное электростатическое отталкивание, так как очевидно, что на малых расстояниях (меньших диаметра орбит) электронные оболочки уже не будут компенсировать больших положительных зарядов ядра. Только в том случае и возможно тесное сближение ядер, когда ядра движутся с большой относительной скоростью и, несмотря на отталкивание, все же могут подойти одно к другому на небольшие расстояния».
– Вполне понятно, – говорил он, – что проще могут быть реализованы расщепления легких ядер, имеющих меньший заряд, чем тяжелых. Далее ясно, что легче вызвать расщепление частицами, имеющими малый заряд ядра, и лучше всего употреблять для этой цели атомы водорода, заряд ядра которых равен единице.
Именно стремление бомбардировать ядра по возможности легкими частицами с малым зарядом и привлекло внимание физиков и самого Курчатова к дейтонам и протонам.
– Эти представления явились программой работ ряда больших лабораторий и институтов, занимавшихся исследованием свойств ядра, – говорил Курчатов. – Предполагалось, что, употребляя в качестве снарядов разрушения протоны, удастся вызвать ядерные реакции при относительных скоростях частиц, меньших, чем те, с которыми оперировал Резерфорд. Эти предположения оправдались. Кокрофту и Уолтону в Кембридже первым удалось вызвать разрушение ядер лития пучком протонов. Они получали протоны больших скоростей, ускоряя их в электрическом поле в трубках, напоминающих обычные рентгеновские трубки и работающих на еще более высоких напряжениях...
Сделал новый шаг и сам Резерфорд. Он установил, что ядерная реакция между ядрами водорода идет при скоростях частиц, равных 1300 километрам в секунду.
– Казалось бы, – комментировал Игорь Васильевич этот результат, – реакция водорода с водородом ставит нижний предел для скоростей частиц, которые еще могут вызывать ядерные превращения, в этом случае отталкивающие силы между ядрами минимальные. Но поразительные открытия последних лет показалиоднако, что это оказывается неверным. Были обнаружены новые частицы – нейтроны, масса которых равна массе протона, а заряд равен нулю. Очевидно, что для нейтронов, не имеющих заряда, не будут существовать те ограничительные условия для сближения с ядрами, которые так сильно затрудняют взаимодействие ядер во всех других случаях, и apriori ясно, что нейтроны будут очень эффективны в ядерных превращениях.
В 1933 году еще не было условия для изучения взаимодействия нейтронов с веществом, так как не существовало доступных источников нейтронов. Поэтому свое внимание Игорь Васильевич обратил пока на протоны.
И источники протонов тогда были у нас еще малодоступны. «Хотя нам удавалось ставить интересные эксперименты по ядерной физике, – вспоминает академик А. И. Алиханов, – это было очень и очень нелегко. Дело в том, что в физико-техническом институте не было самого главного для исследования ядра – не было источника частиц для бомбардировки и расщепления ими ядер. В то время источниками частиц с большой энергией были естественные радиоактивные элементы – продукты распада радия.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


А-П

П-Я