https://wodolei.ru/catalog/sistemy_sliva/sifon-dlya-rakoviny/s-perelivom/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 



Однако для каждой новой машины либо он сам, либо Крейг с Мак-Каллохом все-таки находили такое истинное утверждение, которое машина доказать не могла. Поэтому в конце концов Фергюссон отказался от мысли сконструировать чисто механическое устройство, которое было бы одновременно и точным (в указанном выше смысле. — Перев.), и могло бы доказать любое истинное арифметическое утверждение.
Итак, все героические попытки Фергюссона не увенчались успехом, однако причина этого заключалась отнюдь не в недостатке авторской изобретательности. Мы не должны забывать о том, что он жил за несколько десятилетий до знаменитых открытий таких известных логиков, как Гёдель, Тарский, Клини, Тьюринг, Пост, Черч и другие ученые, о работах которых у нас вот-вот пойдет речь. Если бы Фергюссон дожил до этих открытий, то он понял бы, что неудачи его обусловлены исключительно тем, что он пытался создать нечто по сути своей совершенно невозможное! Поэтому, отдав должное Фергюссону и его коллегам Крейгу и Мак-Каллоху, распрощаемся с ними и перенесемся на три-четыре десятилетия вперед, в переломный 1931 год.

Решения

1. Одно из решений состоит в следующем: утверждение 75ЄА75 является истинным, но не может быть доказано машиной. И вот почему.
Допустим, что утверждение 75 Є А75 ложно. Тогда число 75 не принадлежит множеству А75 Следовательно, это число должно принадлежать множеству А25 (согласно свойству 2, множество Аn является дополнением множества А3n) — Это означает (согласно свойству 3), что число 75*75 принадлежит множеству А8, поскольку 25 = 3X8-1-1, и, следовательно, машина может напечатать число 75*75. Иначе говоря, это означает, что утверждение 75 Є А75 может быть доказано машиной. Таким образом, если бы утверждение 75 Є А75 было ложным, то оно вполне могло бы быть доказано машиной. Однако нам известно по условию, что машина точна и никогда не доказывает ложные утверждения. Поэтому утверждение 75 Є А75 не может оказаться ложным, и, стало быть, оно должно быть истинным.
Далее, поскольку утверждение 75ЄА75 истинно, то число 75 действительно принадлежит множеству Аn. Поэтому оно не может принадлежать множеству А 25 (согласно свойству 2), и, следовательно, число 75 * 75 в свою очередь не может принадлежать множеству А8, поскольку если бы это было так, то тогда, согласно свойству 3, число 75 принадлежало бы множеству а25. Поскольку ясно, что число 75 * 75 не принадлежит множеству Ag, то утверждение 756А75 не может быть доказано машиной. Итак, утверждение 75ЄA75 является истинным, но оно недоказуемо с помощью машины.
2. Прежде чем рассматривать другие решения, установим следующий факт весьма общего свойства. Пусть для всего дальнейшего ключевым является множество К — это множество всех чисел х, для которых утверждение х Є Аx недоказуемо машиной, или, что то же самое, множество таких чисел х, для которых число х*х не может быть напечатано машиной. Далее, множество А75 как раз и есть такое множество К, потому что утверждение, что х принадлежит множеству Аn, равносильно утверждению, что х не принадлежит множеству A25, что в свою очередь равносильно утверждению, что число х*х не принадлежит множеству А8, где А8 — это множество тех чисел, которые машина может напечатать. Итак, А75 = К. Но при этом и Аn = К, потому что утверждение, что некое число х принадлежит множеству An, равносильно утверждению, что число х*х принадлежит множеству А8 (согласно свойству 3, поскольку 73 = 3x24+1), что в свою очередь равносильно утверждению, что число х+х не принадлежит множеству А8 (согласно свойству 2). Таким образом, А75 — это множество всех тех чисел х, для которых число х*х не принадлежит множеству А8 или, что то же самое, множество всех чисел х, для которых утверждение х Є Аx не может быть доказано машиной. Следовательно, А73 — это то же самое множество чисел, что и A75 поскольку оба они тождественны множеству К. Более того, для любого заданного числа n, для которого Аn = К, утверждение n Є А* должно быть истинным, но недоказуемым с помощью машины. Это можно показать буквально с помощью тех же самых рассуждений, что и в рассмотренном нами частном случае n = 75 (в еще более общей форме эти рассуждения приведены в следующей главе). Тем самым мы получаем, что утверждение 73 Є А73 — это еще один пример истинного утверждения, кодовый номер которого машина напечатать не может.
3. Для любого числа n множество А9n должно совпадать с множеством n. В самом деле, множество А9n есть дополнение множества A3n, а множество А3n в свою очередь есть дополнение множества n; следовательно, множество А9n совпадает с Аn, Это означает, что множество A675 совпадает с множеством A75, и, стало быть, утверждение 675 Є А675 — это есть еще одно решение задачи. Аналогично утверждение 2175 Є A2175также является решением. Таким образом, мы получаем, что существует бесконечно много истинных утверждений, которые машина Фергюссона доказать не может: например, для любого n, которое равно произведению 75 на некоторое кратное числа 9 или произведению 73 на произвольное кратное числа 9, утверждение n Є А, является истинным, но недоказуемым посредством этой машины.


Доказуемость и истина

Крупной вехой в истории математической логики стал 1931 г. Именно в этом году Гёдель опубликовал знаменитую теорему о неполноте. Свою эпохальную работу «Uber formal unentscheidbare Satze der «Principia Mathematica» und verwandter Systeme'I» («О формально неразрешимых предложениях «Принципов математики» и других родственных систем»), Моnatshefte fur Mathematik und Physik, 38, 173–198.

он начинает следующими словами:
«Развитие математики в направлении все большей точности привело к формализации целых ее областей, в связи с чем стало возможно проводить доказательства, пользуясь небольшим числом чисто механических правил. В настоящий момент наиболее исчерпывающими системами являются, с одной стороны, система аксиом, предложенная Уайтхедом и Расселом в работе «Princlpia Mathematica», а с другой — система Цермело—Френкеля в аксиоматической теории множеств. Обе эти системы настолько обширны, что в них оказывается возможным формализовать все методы доказательства, используемые сегодня в математике, — иначе говоря, все эти методы могут быть сведены к нескольким аксиомам и правилам вывода. Поэтому, казалось бы, разумно предположить, что указанных аксиом и правил вполне хватит для разрешения всех математических проблем, которые могут быть сформулированы в пределах данной системы. Ниже будет показано, что дело обстоит не так. В обеих упомянутых системах имеются сравнительно простые задачи из теории обычных целых чисел, которые не могут быть решены на базе этих аксиом». Выборочный перевод автора.


Далее Гёдель объясняет, что такая ситуация обусловлена отнюдь не какими-то специфическими особенностями двух упомянутых систем, но имеет место для обширного класса математических систем.
Что имеется в виду под «обширным классом» математических систем? Это выражение интерпретировалось по-разному, и соответственно по-разному обобщалась теорема Гёделя. Как ни странно, одно из самых простых и доступных для неспециалиста объяснений остается наименее известным. Это тем более удивительно, что на такое объяснение указывал и сам Гёдель во вводной части своей первой работы. К нему мы сейчас и обратимся.
Рассмотрим систему аксиом со следующими свойствами. Прежде всего пусть у нас имеются имена для различных множеств положительных целых чисел, причем все эти «именуемые», или допускающие наименование, множества мы можем расположить в виде бесконечной последовательности А1, А2…, An… (точно так же, как в системе Фергюссона, рассмотренной в предыдущей главе). Назовем число n индексом именуемого множества А, если А=n. (Таким образом, если, например, множества А2, А7 и A13 совпадают между собой, то тогда числа 2, 7 и 13 — это все индексы одного и того же множества.) Как и для системы Фергюссона, с каждым числом х и с каждым числом у мы связываем утверждение, записываемое в виде х Є Ау, которое называется истинным, если х принадлежит А у, и ложным, если х не принадлежит Ау. Однако в дальнейшем мы не предполагаем, что утверждения типа х Є Ау являются единственно возможными утверждениями в данной системе, поскольку могут существовать и другие. Предполагается также, что любое возможное утверждение обязательно классифицируется либо как истинное, либо как ложное.
Каждому утверждению в данной системе присваивается некий кодовый номер, который мы будем называть геделевым номером, причем гёделев номер утверждения x Є АУ будем обозначать х*у. (Теперь уже нет нужды предполагать, что число х*у состоит из цепочки единиц миной х, за которой следует цепочка нулей длиной у; cам Гёдель фактически использовал совсем другую кодовую нумерацию. Можно пользоваться самыми разными видами кодовой нумерации, и какой вид оказывался более удобным — это зависит от конкретного вида рассматриваемой нами системы. Так или иначе, для доказательства той общей теоремы, которую мы скоро докажем, нет необходимости вводить какую-то конкретную гёделеву нумерацию.)
Определенные утверждения в данной системе принимаются как аксиомы; кроме того, вводятся также некие специальные правила, по которым можно на основании этих аксиом доказывать различные другие утверждения. Таким образом, в данной системе имеется иполне определенное свойство утверждения, называемое его доказуемостью.
Далее предполагается, что система правильна в том смысле, что каждое доказуемое в этой системе утверждение является истинным; отсюда, в частности, следует, что если утверждение x Є Aу доказуемо в данной системе, то число х действительно является элементом множества Ау.
Пусть Р — это набор гёделевых номеров всех доказуемых в данной системе утверждений. Пусть опять же для любого множества чисел А его дополнение обозначается символом А (это множество всех чисел, не принадлежащих А). Наконец, через А* мы будем обозначать множество всех чисел х, для которых число x*х принадлежит А. При этом нас будут интересовать системы, для которых выполняются следующие три условия Gi, G2 и G3:
Условие G1. Множество Р допускает наименование в данной системе. Иначе говоря, существует по крайней мере одно число р, для которого Ар представляет собой множество гёделевых номеров доказуемых утверждений. (Для системы Фергюссона таким р было число 8.)
Условие G2. Дополнение любого множества, допускающего наименование в данной системе, также именуемо в этой системе. Иначе говоря, для любого числа х найдется такое число х, для которого множество А* является дополнением множества Ах. (Для системы Фергюссона таким х было число 3х.)
Условие G3. Для любого именуемого множества А множество А* также именуемо в данной системе. Иначе говоря, для любого числа x всегда найдется такое число х*, что множество А, — представляет собой, множество всех чисел n, для которых n*n принадлежит А, (Для системы Фергюссона таким х* было число 3x+1.)
Очевидно, что условия F1, F2 и Fз, характеризующие машину Фергюссона, представляют собой не более чем частные случаи условий G1, G2 и G3. Последние имеют большое значение потому, что они действительно выполняются для самых разнообразных математических систем, в том числе и для тех двух систем, которые рассмотрены в работе Гёделя. Другими словами, оказывается возможным расположить все допускающие наименование множества в виде бесконечной последовательности A1, A2…, An… и ввести для всех утверждений некоторую частную нумерацию Гёделя, причем так, что будут выполняться условия G 1, G2 и G3. В результате все то, что является доказуемым для систем, удовлетворяющих условиям G1, G2 и G3, будет применимо ко многим другим важным системам. Теперь мы можем сформулировать и доказать теорему Гёделя в общей форме.
Теорема G. Для любой правильной системы, удовлетворяющей условиям G1, G2 и G3, должно существовать утверждение, которое является истинным, но недоказуемым в данной системе.
Доказательство теоремы G представляет собой простое обобщение доказательства, которое уже известно читателю для системы Фергюссона. Обозначим через К множество таких чисел х, для которых элемент х*х не принадлежит множеству Р. Поскольку множество Р (согласно условию G1) именуемо в данной системе, то же можно сказать и о его дополнении Р (согласно условию G2), а следовательно, и о множестве Р* (согласно условию G3). Но множество Р* совпадает с множеством К (поскольку Р* — это множество таких чисел х, для которых х* х принадлежит Р, или, другими словами, множество таких чисел х, для которых элемент х*х не принадлежит Р). Таким образом, множество К допускает наименование в данной системе, откуда следует, что К = А* по крайней мере для одного числа k. (Для системы Фергюссона одним из таких чначений k было число 73, другим — число 75.) Таким образом, для любого числа х истинность утверждения x Є Ak равносильна утверждению, что число х*х не принадлежит Р, а это в свою очередь означает, что утверждение x Є Ax недоказуемо (в данной системе). В частности, если мы возьмем в качестве х число k то истинность утверждения k Є A* будет равносильна его недоказуемости в данной системе, что означает либо истинность, но недоказуемость этого утверждения, либо его ложность, но доказуемость в той же системе. Но последняя возможность исключена, поскольку мы предположили, что наша система является правильной; следовательно, указанное утверждение истинно, но недоказуемо в данной системе.
Обсуждение. В своей предыдущей книжке «Как же называется эта книга?» я рассматривал аналогичную ситуацию — остров, все жители которого делятся на рыцарей, которые всегда говорят только правду, и плутов, которые всегда лгут. При этом некоторых рыцарей мы называли признанными рыцарями, а некоторых плутов — отъявленными плутами. (Все рыцари высказывают истинные суждения, а признанные рыцари высказывают утверждения, которые не только истинны, но и доказуемы.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28


А-П

П-Я